adrian paenza
matematiko, jsi to ty?
ČÍSLA, OSOBNOSTI, PROBLÉMY A ZVLÁŠTNOSTI
Adrián Paenza Matematiko, jsi to ty?
adrián paenza
matematiko, jsi to ty?
ČÍSLA, OSOBNOSTI, PROBLÉMY A ZVLÁŠTNOSTI

O knize

Dobré knihy nám vydrží jeden den. Lepší vydrží jeden rok. A velmi dobré knihy vydrží mnoho let. Ale také existují knihy, které nás provázejí po celý život – a ty jsou nepostradatelné. Tato kniha se řadí mezi ty, jež trvají po celý život – taková truhla s pokladem, která nás po otevření zavalí otázkami a záhadyami, čísly tak velkými, že jsou až nekonečná (různě nekonečná), osobnostmi, s nimiž by se člověk chtěl setkat a popovídat si s nimi jako s přáteli.

Adrián Paenza si nejen pokládá otázku, proč má matematika tak špatnou pověst – jeho hlavní starostí je nám přiblížit pátrání po vzorcích a pravidelnostech a daří se mu nás nakazit svým nezdolným nadšením pro věc. Paenza je zvědavý jako málokdo a zahaluje nás universem, v němž kraluje věda, ale zároveň nezapomíná na přátele, záhady, vzdělání a příhody ze života zasvěceného počtům a výuce.

Některé povídky jsou součástí příhod, jež autor předkládá v televizním cyklu Vědci v argentinském průmyslu, což je možná část, na niž veřejnost, která se týden co týden snaží řešit úlohy s klobouky, ruletami nebo narozeninami, čeká nejvíce. Ale všechny příhody dohromady vytvářejí obšírné a štědré universum, universum Adriána Paenzy, které díky této knize může pojmout další nadšence.

Kniha nás provádí novými končinami pomocí mnoha rozličně obtížných příkladů. A tak se objevují zajímavosti, jež se dají čist lépe a pohodlněji, a zároveň kapitoly vyzývající čtenáře k odvážným úvahám a důkazům, jaké se někdy vyžadují přímo po studentech vědních oborů (některé kapitoly zahrnují témata z předmětů, jež sám Paenza
přednáší na Fakultě exaktních a přírodních věd na Universidad de Buenos Aires. A tak zatímco budeme žasnout nad Paenzovým dobrodružstvím v zemi matematiky, budeme si zároveň jako čtenáři moci hrát na studenty věd před tabulí s algebrou nebo matematickou analýzou.

Matematiko, jsi to ty? Možná si „takové otázky pokládáte“, ale jisté je, že matematika je skutečně za každým rohem a ve všedním životě čeká na to, až ji objevíme. K tomu nyní máme výborného průvodce, který nás k pátrání přiměje.

Tuto knížku o šíření vědy napsali vědci, kteří se domnívají, že je načas se vystrčit hlavu z laboratoře a vyprávět o krásách, velikosti a nezdařech této profese. A přesně o to jde – vyprávět, podělit se o znalosti, jež by nakonec mohly přijít vníveč, kdyby zůstaly skryty.

Diego Golombek
Tuto knihu věnuji svým rodičům Ernestovi a Frumě, kterým vděčím za vše.
Své sestře Lauře.
Carlosu Griguolovi.
Památce tety Eleny, Miriam a Defie a také památce Guida Peskina, Leóna Najnudela, Mannyho Kreitera a Noemí Cuñové.
Poděkování

Diegu Golombekovi – bez něho by tato kniha nevznikla.
Claudiu Martínezovi – jako první na mě naléhal, abych příběhy z knihy vyprávěl v televizi, a povzbudil mě k tomu, abych to skutečně udělal.
Svým studentům – právě oni mě naučili vyučovat a já jsem díky nim pochopil, co to znamená učit se. Děkuji svým přátelům, prostě proto, že jsou mými přáteli a mají mě rádi, což je pro mě nejpodstatnější.
Carmen Sessové, Alicii Dickensteinové, Miguelu Herrerovi, Baldomero Rubiovi Segoviovi, Eduardu Dubucovi, Carlosu D´Andreovi, Cristianu Czubaruvi, Enzu Gentileovi, Ángelu Larotondovi a Luisi Santalóovi.
Všem, kdo si přečetli rukopis (vlastně ne tak úplně rukopis), pustili se do něj a tak se ho pokusili záchránit, jen nevím, zda se jim to podařilo – dík si zaslouží Gerardo Garbulsky, Alicia Dickensteinová a Carlos D´Andrea.
Dále Marcelo Bielsa, Alberto Kornblihtt, Víctor Hugo Morales a Horacio Verbitsky za svůj etický postoj k životu.
Díky nim je ze mě lepší člověk.
Velcí lidé hovoří o myšlenkách, průměrní lidé hovoří o věcech, malí lidé hovoří o... ostatních lidech.*

*Tuto větu jsem před lety zahlédl ve Spojených státech na zadním nárazníku jednoho z aut: „Great people talk about ideas, average people talk about things, small people talk... about other people.“
Pokaždé když mám promluvit o matematice k nematematicky zalоženému publiku, zvažuji, jak začít. Pořád stejně. Požádám o svolení a přečtu text od Pabla Amstera, vynikajícího matematika, hudebníka, odborníka na kabalu, který je navíc výjimečný člověk.

Pablo tento příběh použil při matematickém semináři pořádaném pro skupinu studentů výtvarného umění v Buenos Aires. Jedná se o úžasný text, o nějž se chci s vámi podělit (s Pablovým souhlasem).

Tady je. Jmenuje se „Ruka princezně“.

Několik dílů jednoho známého českého animovaného seriálu vypráví o princezně, o jejíž ruku se uchází mnoho nápadníků.

Ti mají za úkol princeznu přesvědčit o svých kvalitách – v několika epizodách jsou znázorněny nejrůznější vynalézavé pokusy o svádění, které každý nápadník podnikne.

Nápadníci s rozličnými jednoduchými nebo naopak ohromujícími po- můckami jeden po druhém předstupují před princeznu, ale žádný ji ani trochu nezaujme.

Vzpomínám si například na jednoho, který jí předváděl děšť ze světel a hvězd; další se zase velkolepě vznášel a v prostoru prováděl různé pohyby. Nic. Na konci každé epizody se princezně zračí ve tváři naprosto netečný výraz.

Teprve poslední, závěrečný díl seriálu poskytne nečekaný konec – v porovnání se zázraky, které princezně nabízeli jeho předchůdci, vytáhne po-
slední nápadník z pláště brýle a podá je princezně, aby si je vyzkoušela. Princezna si je nasadí, usměje se a podá mu ruku.

* * *

Co se možných výkladů týče, je to příběh velmi přitažlivý a každá epizoda je sama o sobě velice krásná. Avšak teprve výsledné rozuzlení s sebou přináší pocit, že vše dopadne, jak má.

Příběh vskutku zajímavě pracuje s napětím, které nás v jistém okamžiku dovede k domněnce, že princezna se nespojí s ničím.

Po jednotlivých epizodách, kdy nás už techniky nápadníků vyčerpávají, se na stále nespokojenou princeznu naštvejme. Co čeká, že ji někdo předvede? A vtom se náhle objeví neznámý fakt – princeznu žádný z předváděných divů nenadchl proto, že je neviděla.

Takže potíž byla v tomhle. Samozřejmě. Kdyby se v pohádce tato skutečnost naznačila dříve, její konec by nás nepřekvapil. Mohli bychom sice pořád obdivovat nádheru výjevů, ale dotyčné jinochy s různými dobyvatelskými pokusy bychom považovali za hloupé, jelikož bychom věděli, že princezna je krátkozraká.

Jenže když o tom nevíme, domníváme se, že za to můžou nápadníci, protože jak se zdá, nabízejí princezně příliš málo. Poslední nápadník ale už ví, že ostatní selhali, a tak se na celou situaci podívá z jiného úhlu. Podívá se na problém jinak.

Takže pokud ještě nevíte (Pablo se zde obrací na své posluchače, studenty výtvarného umění), o čem bude tento seminář, možná bude te překvapení stejně jako v případě vyústění předešlého příběhu – budeme hovořit (a vlastně již hovoříme) o matematice.

Povídání o matematice totiž opravdu neznamená jen dokazovat Pythagorovu větu – znamená to také hovořit o láse a vyprávět příběhy o princeznách. I v matematice je krása. Jak řekl básník Fernando Pessoa: „Newtonova binomická věta je stejně krásná jako Venuše z Mélun; ale jen málokdo si toho všimne.“

Jen málokdo si toho všimne... Kvůli tomu ten příběh o princezně;
protože jak správně uhodne poslední nápadník, potíž je v tom, že „Nejzajímavější věci této země nejsou vidět“ (Henri Michaux, „Kouzelná země“).

Sám jsem se mnohokrát ocitl v kůži oněch prvních jinochů. A tak jsem se vždycky snažil vysvětlovat nejkrásnější matematické otázky, ale musím přiznat, že mé zanícené pokusy se většinou nesetkaly s předpokládanou odezvou.

Tentokrát se pokusím přiblížit skromnému jinochovi z poslední kapitoly. O matematice, kterou Whitehead nazval „nejoriginálnějším výtvorem lidského ducha“, se toho dá napovídat hodně. Kvůli tomu se koná tento seminář. Ale dnes i já na věci raději pohlížím jinak, a tak začínám povídkou.

Čísla

Velká čísla

Když se já sám ocitnu před takhle velkými čísly, obvykle jsem srovnávám a dávám si je do protikladu s něčím snáze představitelným.

Na světě je více než šest miliard lidí. Ve skutečnosti už nás je (v srpnu 2005) více než šest miliard tři sta milionů. Zdá se to mnoho. Ale co je to vlastně mnoho? Uvidíme. Jaký je rozdíl mezi milionem a miliardou? (Kromě toho, že miliarda má o tři nuly víc.) Abychom se na tato čísla mohli podívat s odstupem, převedeme je na vteřiny. Třeba si představme, že v jedné vesnici, kde se čas měří jen ve vteřinách, někoho obviní ze spáchání trestného činu. Před soudcem, který se případem zabývá, se spolu střetnou žalobce a obhájce. Žalobce pro obviněného požaduje „miliardu vteřin odnětí svobody“. Obhájce jeho bláznivý návrh odmítne s tím, že je ochoten přistoupit na „symbolických milion vteřin“. Soudce, který je zvyklý takto měřit čas, si je vědom, že jde o obrovský rozdíl. Chápete proč? Zamyslete se: milion vteřin je přibližně jedenáct a půl dne. Ovšem miliarda vteřin už znamená téměř... třicet dva let!
Tento příklad znázorňuje, že obecně nemáme moc dobré povědomí o tom, co čísla vyjadřují, a to dokonce ani v každodenním životě. Vratíme se k tématu obyvatel Země. Jestliže nás je šest miliard, pak kdyby se fotografie každého z nás svázaly do jedné knihy, přičemž tloušťka jednoho listu by byla desetina milimetru, na jednu stranu by se vešlo deset lidí a každý list by se využil oboustranně..., kniha by byla vysoká celých třicet kilometrů! A kdyby si ke všemu chtěl fotografie někdo prohlédnout s tím, že na jednu stranu, tedy deset podobizen, by potřeboval jednu vteřinu a této činnosti by se věnoval šestnáct hodin denně, trvalo by mu dvacet osm a půl let, než by si je všechny prohlédl. A ještě než by dospěl ke konci, v roce 2033, kniha by se zatím rozrostla, jelikož nás bylo o dvě miliardy víc, a tudíž by se světšila o celých deset kilometrů.

Zamysleme se teď nad tím, kolik místa bychom potřebovali, kdybychom se všichni chtěli sejít. Stát Texas (s největší rozlohou ze států USA s výjimkou Aljašky) by mohl pojmout celou populaci. Je to tak. V Texasu se nachází asi čtyři desítky tisíc metrů čtverců obývatelné plochy. A my, lidé, bychom se tak mohli všichni sejít v Texasu a každý z nás by měl k dispozici pozemek o velikosti sedmidesáti kilometrů čtverců. To není špatné, viděte?

Teď se pojďme seřadit tak, aby každý z nás zabral dlaždicí o délce strany třicet centimetrů, čili devět set centimetrů čtverečních. Takto by lidstvo vytvořilo řadu delší než milion šest set tisíc kilometrů. A to by nám umožnilo se dvacátýticentimetrkatrát obtočit kolem rovníku.

Co by se stalo, kdybychom se všichni chtěli stát filmovými herci a natočili bychom film, v němž by každý dostal svůj hvězdný okažík? I kdyby se každý ve filmu mihnul jen patnáct vteřin (což by vyšlo na méně než sedm metrů filmu na člověka), potřebovali bychom celkem čtyřicet milionů kilometrů negativu. A kdyby pak někdo chtěl film vidět, musel by v kině prosedět dvacet tři milionů tři sta třicet tři tisíc tři sta třicet tři hodin, což dělá devět set sedmdesát tisíc dvě stě dvacet dva dní, čili asi dva tisíce šest set šedesát tři let. A to pouze
za předpokladu, že bychom nespali, nejedli a nic jiného celý život ne-
dělali. Navrhuji, abychom se rozdělili, každý z nás zhlédne část filmu
a pak se sejdeme a převyprávíme si nejlepší momenty.

Více o velkých číslech: váha šachovnice

Uveďme ale i další příklad. Existuje jeden, jenž je znám všem, kteří se
chtějí pochlubit ukázkou exponenciálního růstu a ohromit poslucha-
če tím, že jim předvedou, jak čísla narůstají, co se týče... prostě jak
exponenciálně rostou.

Typickým příkladem jsou zrnka rýže, jimiž chce král odměnit své-
ho poddaného za to, že mu zachránil život. Když mu poddaný řekne,
že jediné, co si přeje, je, aby mu na jedno políčko šachovnice dal jedno
zrnko rýže, dvě na druhé, čtyři na třetí, osm na čtvrté, šestnáct na
páť, třicet dva na šesté a tak pořád dále, aby se počet zrníček rýže
vždy zdvojnásobil, dokud nedojde na poslední políčko, král si uvě-
domí, že na to, aby vyhověl přání svého „zachránce“, nevystačí rýže
z celého království (ale ani ze sousedních království).

Pojďme si tento příklad trochu přiblížit dnešní době. Místo zrnek
rýže vezmeme zlaté valouny o hmotnosti jednoho gramu. Je jisté, že
pokud se král nakonec potýkal s rýží, se zlatem by dopadl daleko hůř.
Teď se chci ale zeptat na něco trochu jiného – kdyby král mohl splnit,
co se po něm žádalo, kolik by šachovnice vážila? Tedy za předpokla-
du, že by se na šachovnici dalo vysázet množství valounů, které určil
poddaný, o kolik by šachovnice měla větší hmotnost? A za jak dlouho
by se všechny valouny daly uložit do kapsy, kdyby na každý valoun
připadala jedna vteřina?

Jelikož má šachovnice šedesát čtyři políček, dostali bychom osm-
náct trilionů valounů. Tady už jsou čísla opět jistě matoucí, protože
člověk si vůbec nedokáže představit, jak vypadá „trilion“ čehosi. Po-
rovnejme jej tedy s něčím bližším. Už jsme uvedli, že každý valoun
váží jeden gram, a tak nás napadne: Kolik je trilion gramů?
Trilion gramů odpovídá jednomu bilionu tun. To nám ale moc nepomůže, protože kdo měl někdy jeden bilion něčeho? Taková hmotnost se rovná čtyřem miliardám Boeingů 777 se čtyřmi sty čtyřiceti cestujícími na palubě, s posádkou a palivem na dvacet hodin letu. Sice jsme o něco pokročili, ale i tak by se člověk mohl ptát, kolik vlastně jsou čtyři miliardy něčeho.

A jak dlouho by trvalo si valouny naskládat do kapsy, kdyby je člověk mohl ukládat extra rychlosti jeden valoun za sekundu? Trvalo by to opět trilion sekund. Ale kolik je trilion sekund? Jak si jej přibližit? Stačí si představit, že bychom tím zabrali víc než sto miliard let. Nevím jak vy, ale já svůj čas hodlám strávit jinak.

Atomy ve vesmíru

Jen pro zajímavost, abychom si ukázali další obrovské číslo, vezměte v potaz, že se ve vesmíru nachází odhadem 2^{300} atomů. Jestliže 2^{10} je přibližně 10^3, pak 2^{300} je asi 10^{90}. A tohle všechno jsem napsal proto, abych mohl říci, že počet atomů ve vesmíru může být zapsaný číslem jedna s devadesáti nulami.

Co je světelný rok?

Světelný rok je měřítkem vzdálenosti, nikoli času. Měří vzdálenost, kterou světlo urazí za jeden rok. Abychom si věc mohli lépe představit, řekněme, že rychlost světla je 300 000 kilometrů za sekundu. Když se toto číslo vynásobí 60 (převedeme je tak na minuty), vychází nám 18 000 000 kilometrů za minutu. A když se toto číslo opět vynásobí číslem 60, znamená to 1 080 000 000 kilometrů za hodinu (jedna miliarda osmdesát milionů kilometrů za hodinu). Když je vynásobíme číslem 24, vychází, že světlo urazilo 25 920 000 000 (25 miliard kilometrů za jeden den).
A konečně, když toto číslo vynásobíme 365 dní, jeden světelný rok (tedy vzdálenost, kterou světlo urazí za jeden rok) je (přibližně) 9 460 000 000 000 (téměř devět a půl bilionu) kilometrů.

Takže až se vás někdo zeptá, kolik je jeden světelný rok, můžete zasvěceně odpovědět, že se jedná o způsob měření vzdálenosti (sice veliké, ale pořád vzdálenosti) a že to je téměř devět a půl bilionu kilometrů. Docela dálka, vidíte?

Zajímavá čísla

Nyní bych rád dokázal, že všechna přirozená čísla jsou „zajímavé“. Nabízí se tak první otázka, co to vlastně znamená, když je nějaké číslo zajímavé? Řekněme, že se jím stane, pokud je něčím přitažlivé, něčím se liší od ostatních čísel, právem něčím vyniká, je nějak omezené nebo neobyvklé. Teď už snad všichni chápeme, co míním slovem zajímavý. A teď k důkazům.

Číslo jedna je zajímavé, protože je první ze všech. Liší se tedy skutečností, že je nejmenší ze všech přirozených čísel.

Číslo dvě je zajímavé hned z několika důvodů – je to první sudé číslo a také první prvočíslo*.* Tyto dva argumenty úplně stačí k tomu, abychom ho mohli považovat za výjimečně.

Číslo tři je zajímavé tím, že jde o první liché číslo, které je zároveň prvočíslem (stačí si vybrat jeden z mnoha možných důvodů).

Číslo čtyři je zajímavé proto, že vyjadřuje mocninu čísla dvě.

Číslo pět je zajímavé tím, že se jedná o prvočíslo. A tak bychom mohli pokračovat dál s vědomím, že pokud je nějaké číslo prvočíslem, už to pro něj znamená důležitou vlastnost, díky níž se liší od ostatních, a my ho tak můžeme považovat za zajímavé a nemusíme pátat po dalších důkazech.

Ale pojďme dál.

Číslo šest je zajímavé proto, že jde o první složené číslo (že tedy

* Jak uvidíme dále, prvočísla jsou čísla dělitelná jen číslem jedna a sama sebou.
není prvočíslo), které není mocninou čísla dvě. Vzpomeňte si, že první složené číslo bylo číslo čtyři, ale to je mocnina čísla dvě.

Číslo sedm je zajímavé a k tomu nám stačí tvrzení, že to je prvočíslo.

A tak bychom mohli pokračovat. Já vám ale chci dokázat tohle:
„Jakékolik celé kladné číslo... obsahuje vždy něco, co ho činí 'zajímavým', 'pozoruhodným' nebo 'neobvyklým'.“

Jenže už jen tím by se první nezajímavé číslo změnilo v zajímavé. Lišilo by se totiž skutečností, že je prvním ze všech nezajímavých čísel, což je více než dostatečný důvod, abychom ho mohli prohlásit zajímavým. Co vy na to? Chyba tedy vzešla z domněnky, že existují nezajímavá čísla. A taková neexistují. Pytel (s nezajímavými čísly) nemůže obsahovat žádné prvky, protože pokud by tomu tak bylo, některý z nich by musel být první, takže číslo z pytle nezajímavých čísel by se stalo zajímavým.

PONAUČENÍ: „Každé přirozené číslo JE zajímavé.“

Jak se stát poradcem s trochu matematiky

Člověk se může tvářit jako věštec nebo jako ten, kdo umí předpovídat budoucnost či předvídat události na burze cenných papírů: stačí jen využít rychlosti, jíž narůstají mocniny nějakého čísla.

Jde o velmi zajímavý příklad. Představte si, že máme k dispozici údaje 128 000 lidí. (Kdyby nastaly nějaké pochybnosti, nemyslete si,
že jich je nějak moc, jelikož většina velkých společností takové údaje má k dispozici, nakupují je a nebo si je zjistí.) Já vás chci však přimět k zamyšlení nad něčím jiným, kdy bychom si vystačili i s menším číslem, výsledek by ale zůstal stejný.

Představme si, že si někdo vybere akci nebo komoditu, jejíž cenu udá na burze. Pro lepší představu dejme tomu, že si zvolí cenu zlata. Také předpokládejme, že si někdy v neděli odpoledne sednete k počítači. Vyhledáte si databázi a vyberete si e-mailové adresy všech lidí, kteří v ní figurují. Pak pošlete polovině z nich (64 000 lidí) e-mail s informací, že cena zlata má následující den (v pondělí) stoupnout. A druhé polovině zašlete e-mail s opačnou informací – že cena zlata klesne. (Z důvodů, které si objasníme v průběhu tohoto příkladu, po- nechme stranou případy, v nichž cena zlata zůstane konstantní při otevření a zavření burzy.)

Nastane pondělí a na konci dne cena zlata buď stoupne, nebo klesne. Pokud stoupla, existuje 64 000 lidí, kteří od vás dostali e-mail s informací o nárůstu ceny zlata.

Jistě, co je na tom. Uhodnout, co se jeden den stane se zlatem, přece není tak podstatné. Ale pokračujme – v pondělí večer vyberete polovinu (32 000) ze 64 000 lidí, kteří od vás dostali první e-mail s tím, že cena zlata stoupne, a oznámíte jim, že v úterý opět stoupne. A druhé polovině, tedy dalším 32 000 lidí, pošlete e-mail se sdělením, že cena zlata klesne.

V úterý večer si budete moci být jisti, že existuje 32 000 lidí, kterým jste správně předpověděli nejen, jak to dopadne v úterý, ale také v pondělí. A teď celý postup zopakujte. Opět lídi rozdělите na polovinu, 16 000 lidí napište, že cena stoupne, a ostatním 16 000, že klesne. Ve středu vám „vyjde“ 16 000 lidí, kterým jste oznámili, jak si zlato bude stát v pondělí, v úterý i ve středu. A ve všech třech případech (u této skupiny) jste se trefili.

Zopakujte to ještě jednou. Ve čtvrtek večer tak budete mít 8000 lidí, pro které jste cenu uhodli čtyřikrát. A v pátek večer jich budou 4000. Teď se zamyslete – v pátek večer existují 4000 lidí, kteří
vědí, že jste každý den dokázali bezchybně předpovědět cenu zlata. Příští týden byste v tom jistě mohli pokračovat a mít 2000 lidí v pondělí, 1000 v úterý, a pro představu, jak by to pokračovalo, byste druhý týden ve středu dostali 500 lidí, kterým jste celých deset dní, den za dnem prozradili, co se stane s cenou zlata.

Kdybyste někoho z nich požádali, aby vás zaměstnal jako svého poradce, a platil by vám třeba tisíc dolarů ročně (úmyslně neuvádím měsíčně, přeci jen jsem skromný člověk...), myslíte, že by vašich služeb nevyužil? Pamatujte, že jste se trefili deset dní za sebou.

Když začnete s větší či menší databází, nebo se předtím spokojíte s rozesíláním elektronické pošty, můžete si takhle vytvořit skupinu lidí, kteří vám nebo vaším předpovědím budou věřit. A ještě si něco vyděláte.*

Hilbertův hotel

Teď si představme, že všechny pokoje jsou obsazené jen jedním člověkem. V jistém okamžiku do hotelu dorazí zjevně velmi unavený pán. Je už pozdě a jeho jediným přáním je rychle vyřídit všechny formality, aby si mohl jít lehnout. Když mu recepční sdělí: „Bohužel teď
nemáme k dispozici žádný volný pokoj, všechny jsou obsazené,“ nově příchozí tomu nemůže uvěřit. A tak se zeptá:

„Ale jak to… Cožpak nemáte nekonečně mnoho pokojů?

„Ale ano,“ odpoví recepční.

„Tak jak je možné, že žádný není volný?“

„Je to to tak, pane. Všechny jsou obsazené.“

„Podívejte se. Vždyť mi tu říkáte nesmysly. Pokud nevíte, jak situaci vyřešit, já vám pomůžu.“

A teď by se hodilo, abyste se sami zamysleli nad odpovědí. Může být odpověď recepčního „nemáme volný pokoj“ správná, když má hotel nekonečně mnoho pokojů? Napadá vás nějaké řešení?

Tady je:

„Takže,“ pokračoval návštěvník, „zavolejte hostu z pokoje číslo 1 a povézte mu, aby se přestěhoval do pokoje číslo 2. Tomu, kdo bydlí v čísle 2, řekněte, aby šel do čísla 3. A člověku z čísla 3, aby se přesunul do čísla 4. A tak pořád dál. Takhle budou mít dál všichni jeden pokoj ‚pro sebe‘ (jako tomu bylo doposud), s tím rozdílem, že se vám teď jeden pokoj uvolní – číslo 1.“

Recepční se na něj nevěřícně podíval, ale pochopil, co mu návštěvník chce sdělit. A problém byl vyřešen.

A teď k dalším příkladům:

a) Co když místo jednoho hosta přijdou dva? Co se stane? Dá se tato situace vyřešit?

b) A kdyby jich místo dvou dorazilo sto?

c) Jak vyřešit případ, v němž by v noci nečekaně přišlo n příchozích (přičemž n je libovolné číslo)? Má tento příklad vždy řešení, nezávisle na počtu osob shánějících nocleh?

d) A kdyby dorazilo nekonečně mnoho lidí? Co by se stalo?