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Uvod

Kvantova teorie je historicky nejuspésnéjsi fyzikalni teorii. Za témét 90 let od svého vzniku
dovolila popsat nebo dokonce predpovédét mnozstvi riznorodych jevll o impozantni §ifi:
od fyziky ,,elementarnich* ¢astic pres stavbu jadra az po chemické reakce a pohyb elektro-
nl v integrovanych obvodech. Kvantova teorie také zasadnim zptisobem zmeénila fyzikalni
obraz svéta, ze kterého fyzici — teoretici i experimentatofi — stejné jako pracovnici dalSich
ptirodnich véd museji vychazet. Takovému vyznamu odpovida ve svétové literatufe i roz-
sahla a stale narustajici knihovna ucebnic kvantové teorie lisicich se obtiznosti, rozsahem
i pojetim. To plati i o jeji nejpocetnéjsi podknihovné — ucebnicich kvantové mechaniky,
v nichZ se nepouziva kvantova teorie pole. Ucebnice této Girovné pro mnohé studenty zna-
menaji vrchol setkani s kvantovou teorii. K nim se fadi i tato kniha, psana ovSem ¢esky
a zaplnujici urcitou mezeru v ¢eské ucebnicové literature.

Vybér ucebnic kvantové mechaniky v ¢estin€ neni totiz piilis rozsahly: pouze v knihov-
nach a antikvaratech mizeme nalézt starsi preklady dvou ucebnic, D. I. Blochinceva
aA. S. Davydoval. Dostupnd, nyni jiz v druhém vydani, je tak pfedev§im dvoudilna uéebni-
ce prof. J. Formanka?, kterd svou naro¢nosti a celkovou koncepci je uréena hlavné teoretic-
kym fyzikiim. Koneéné nedavna kniha prof. L. Skély? je koncipovana na bakalaiské Girovni

1 Davydov, A. S.: Kvantova mechanika. Praha: SPN 1978; Blochincev, D. 1.: Zdklady kvantové mechaniky.
Praha: CSAV 1956.

2 Formének, I.: Uvod do kvantové teorie I, II. Praha: Academia 2004.

3 Skala L.: Uvod do kvantové mechaniky. Praha: Academia 2005; Praha: Nakladatelstvi Karolinum 2012.
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studia fyziky a vénovana moderné pojatému tvodu do kvantové teorie a feSeni standardnich
zékladnich uloh. Znalost zakladd kvantové fyziky v rozsahu této knihy je vhodnym pied-
pokladem ke studiu nasi ucebnice.

Tato kniha je primarné urcena studentim magisterského studia fyziky, aplikované
a technické fyziky, ktefi se zaméfuji na fyziku atomarnich systémi a zabyvaji se tématy,
jako je studium elektronovych stavll v atomech, molekulach a pevnych latkach, transportni
jevy nebo interakce elektront se zafenim. Vybeér témat a rozsah jejich zpracovani byl volen
tak, ze kniha mize slouzit jako standardni u¢ebnice pro vyuku kvantové mechaniky v magi-
sterském a zCasti i v doktorském studiu. Autofi se pii psani mohli opirat jednak o vlastni
badatelskou praxi, jednak o mnohaleté zkusenosti s prednasenim kvantové mechaniky na
riznych trovnich. Pro magisterské studium na Matematickofyzikalni fakulté Univerzity
Karlovy bylo urceno i nase dvoudilné skriptum Univerzity Karlovy Kvantova teorie I, 11,
davno zcela rozebrané.! Na jeho praxi provéfeném pidorysu jsme stavéli, i kdyz vétSina
materialu byla nové zpracovana a rozsifena. M¢li jsme pfitom na mysli i druhé poslani
knihy, jejiz stfedné pokrocila Groven a styl vykladu jsou vhodné i pro ,,druhé ¢teni” kurzu
kvantové mechaniky zajemci z fad fyziki i absolventi dalsich pfirodovédnych oborti nebo
ptirodovédné orientovanych obort technickych. Vétsina témat je proto vykladana o krok
dale, nez je v ucebnicich kvantové mechaniky ustalené. Doplikovy material je ¢asto vlo-
zen do odstavell vymezenych znaky €D. Pomé&rmné rozsahly je i poznamkovy aparat, jednak
s vécnymi dodatky, jednak s citacemi na monografie 1 ptivodni prace tak, aby se k nim
zajemce o dany problém mohl obratit.

Vyklady jsou vedeny explicitné, nic neni odsunuto do uloh nebo cviceni. Zajemce
o feSené ulohy z kvantové mechaniky se miZe obratit na knihu jednoho z nas?. Pti psani
ucebnice jsou autofi postaveni pied dvé volby: maji se drzet ustalenych vzort, nebo usilovat
o originalitu? Nasi snahou bylo sledovat ,,moderni pojeti®, ale neodchylovat se vyrazné od
standardu s cilem, aby kniha dovolovala bezproblémové navazani na odbornou literaturu.
Podobné tivahy nas vedly také k tomu, abychom se disledné drzeli standardni interpretace,
a to jak pfi vykladu postulati kvantové mechaniky, tak i pfi studiu jednotlivych kvantovych
jevu. Do kvantové metafyziky se nepoustime, pokud by se snad za to nemohl pokladat
vyklad von Neumannovy teorie méfeni (kap. 1, § 9.5) a teorie dekoherence (kap. 1, § 9.8),
které jsou ovsem rovnéz konzervativni. Také pokud jde o matematicky aparat, snazili jsme
se, aby pouzita matematika nevybocovala pfili§ z ustalenych zvyklosti ucebnic kvantové
mechaniky. Na druhé stran¢ urcité techniky funkcionalni analyzy jsou bézné pouzivany
v soucasné fyzikalni literatufe, a proto jsme pokladali za vhodné pfipojit v dodatcich struc-
ny piehled temperovanych distribuci a nékterych pojmt funkcionalni analyzy zplsobem,
ktery tésn¢ navazuje na hlavni text a odvolava se na fyzikalni motivaci.

V textu je disledné pouzivano dvojich jednotek, jednak soustavy SI, jednak atomovych
jednotek, tedy jednotek, v nichz jsou naboj a hmotnost elektronu spojeny s (redukovanou)
Planckovou konstantnou a permitivitou vakua vztahem: e = 4ne, = i = m, = 1. Otazce hod-
not zakladnich konstant a systému atomovych jednotek je vénovan prvni dodatek.

1 Kvantovd Mechanika I. Univerzita Karlova 1985; 1992. Kvantova Mechanika II. Univerzita Karlova 1990, 1998.
2 Klima, J., Simurda, M.: Shirka problémii z kvantové teorie. Praha: Academia 2006.
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Vzhledem k Sirokému spektru probiranych témat je rozsah knihy znac¢ny, a proto jsme
se rozhodli rozdélit ji na dva samostatné svazky. Predpokladame, ze ¢tenaf jisty uvod do
kvantové teorie jiz absolvoval (napf. v rozsahu zminéné ucebnice prof. L. Skaly). Kniha
zacind pomérné rozsahlym shrnutim formalni stavby kvantové mechaniky a potiebného
matematického aparatu, pficemz vykladané pojmy jsou ilustrovany fesenim vybranych pro-
blému pohybu jedné ¢astice v Casoveé neproménnych vnéjsich polich (kap. 1-3). Tato ¢ast
obsahuje 1 ne zcela standardni partie, jako jsou vyklad Aharonova-Bohmova jevu, vypocet
kontrastu v kvantovém interferometru a ivod do teorie dekoherence.

Vyklad pohybu v centralnim poli, symetrie a spinu (kap. 4-6) je jistym prohloube-
nim standardnich postupti — spektrum atomu vodiku je odvozeno bezreprezentacné, teorie
symetrie obsahuje elementy teorie grup a jejich reprezentaci a v ramci vykladu spinu je
propocitana spinova rezonance a diskutovan EPR paradox a Bellova nerovnost. Spin je
pak zaveden znovu pfi vykladu Diracovy rovnice (kap. 7) a znovu ilustrovan vypoctem
hyperjemného rozstépeni zakladniho stavu atomu vodiku.

Technické partie — varia¢ni princip, poruchovy pocet ne¢asovy i ¢asovy (kap. 8-9) jsou
ilustrovany jejich aplikaci na vypocty atomovych a molekularnich energetickych hladin
(kap. 10) a vykladem semiklasické a kvantové teorie interakce atomu se zarenim (kap. 11).

Velka pozornost je vénovana feseni mnohacasticového problému v kvantové mechanice
force method*, tak ,,mean field method* jsou podrobné diskutovany. Prva z nich vypocty
hladin atomu helia a vodikové molekuly, druha Hartreeho-Fockovou teorii a jeji aplikaci na
systematiku atomovych hladin. Cela jedna kapitola (kap. 11) je vénovana vypoctim celko-
vych energii a problému korelace metodou funkcionalu hustoty (DFT), ktera po prvotnich
uspésich pfi pouziti v rozlehlych systémech se stala i pfedni metodou kvantové chemie.

Naproti tomu teorie rozptylu (kap. 12), se omezuje na elasticky rozptyl.! O to podrob-
néji je vykladan rozptyl na sféricky symetrickém potencialu majici cetné aplikace v teorii
kondenzovanych soustav.

Interakce s elektromagnetickym zarenim (kap. 13) je vykladana na dvou trovnich —
jako semiklasicka (absorpce a emise zareni, Kubova formule) i pln¢ kvantova (chaotické
a koherentni zafeni, jednofotonové a dvoufotonové procesy). Kvantova teorie zafeni je
ilustrovana podrobnym fesenim interakce zareni s dvouhladinovym atomem, v jehoz ramci
je (nerelativisticky) po¢itan i Lambtiv posuv.

Jak uz bylo uvedeno, kniha obsahuje fadu matematickych dodatkt vysvétlujicich zakla-
dy teorie distribuci, vlastnosti prostort kvantové mechaniky, zavedeni zobecnénych vlast-
nich funkci, operatorovy pocet a dalsi zakladni pojmy funkcionalni analyzy.

Jan Klima, Bedfich Velicky
Matematicko-fyzikalni fakulta

Univerzita Karlova v Praze
Praha, 2008-2014

1 Teorie rozptylu v mnohem $ir§im rozsahu je podrobné¢ vykladana v diive citované ucebnici J. Formanka.
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CAST PRVNI -
FORMALNI STAVBA
KVANTOVE MECHANIKY






/1/
Matematicky aparat
a principy kvantove mechaniky

1.1 UVOD

I kdyz v této knize budujeme formalni aparat kvantové teorie systematicky a od zacatku,
predpokladame, Ze ¢tenar je jiz obeznamen s historii vzniku a tvodni formulaci kvantové
mechaniky a pojmy jako vinova funkce, relace neurcitosti, ¢asova a necasova Schrodin-
gerova rovnice jsou mu znamé — prinejmensim v pfipad¢ pohybu jedné Castice v jedné
dimenzi. Jak je v pokroc¢ilejsich uéebnicich kvantové mechaniky obvyklé, shrnujeme proto
formalismus do nékolika postulatl, kter¢ ilustrujeme ptiklady. Na druh¢ strané¢ nam nejde
o axiomatiku kvantové mechaniky a postulaty jsou vysloveny tak, aby jejich znéni bylo
srozumitelné Sirokému okruhu ¢tenaiti s minimalni pripravou zakladi kvantové mechaniky
a matematiky.

I tak je kvantova mechanika po matematické strance obtizna a pouzivany aparat presa-
huje bézné matematické vzdeélani fyziki, piinejmensim v dobé, kdy je jim obséahlejsi kurs
kvantové teorie bézné piednasen. Proto jsme do textu — jak je rovnéz zvykem — zaradili
i struéné shrnuti pouzivaného matematického aparatu, § 3. Zaradili jsme ho za prvé dva
postulaty, z nichz vyplyva, které pojmy linearni algebry a funkcionalni analyzy (zejmé-
na vlastnosti Hilbertova prostoru) se dostaly do kvantovémechanického popisu ptirodnich
zakont. Exaktnéjsi vyklad pouzité matematiky (linedrnich prostord, otazek konvergence
v nekone¢né rozmérnych prostorech, vlastnosti operatort, zakladi teorie distribuci apod.)
je pak obsahem matematickych dodatktt B-D.

/1/ MATEMATICKY APARAT A PRINCIPY KVANTOVE MECHANIKY -15-



Zvlasté kontroverzni ¢asti kvantové mechanického popisu pfirody je teorie méte-
ni; kodanska interpretace zavad¢jici ,,redukei vinové funkce* sice pragmaticky obchazi
fadu potizi, ale z hlediska uzivatele vétsinou vyhovuje, proto i my se ji pfidrzime (§ 5).
Z moderngjsich teorii, které jdou za interpretaci kodanské skoly, se stru¢né zminime o teorii
dekoherence (§ 9.8).

Smisené stavy a jejich popis pomoci matice hustoty, které dovrsuji formalni schéma
kvantové mechaniky, umoziuji popis otevienych systémi a jsou odrazovym mustkem
kvantové statistiky v rovnovaze i mimo rovnovahu, jsou zavedeny a analyzovany v § 9.

Diskuse EPR paradoxu a Bellovych nerovnosti, které dokresluji zvlastnosti popisu ptirody
kvantovou mechanikou, je standardné vykladana tvahami o méfeni na singletnim stavu dvou
polovicnich spint, a proto je odlozena do kap. 6, kde pojedname o spinu a jejich skladani.

Vylozené pojmy jsou ilustrovany podrobnou diskusi tfi systémi: linearniho harmonic-
kého oscilatoru, volné ¢astice a nabité ¢astice v konstantnim magnetickém poli.

1.2 REPREZENTACE STAVU A FYZIKALNICH VELICIN

V klasické fyzice je pohyb ¢astice popsan znalosti jeji trajektorie. Ziskame ji feSenim
klasickych pohybovych rovnic, zname-li poc¢atecni podminku, jiz je stav ¢astice v jednom
casovém okamziku: jeji okamzita poloha a okamzita rychlost (nebo hybnost). Vysledkem
je zavislost polohového vektoru ¢astice na Case, r(t), coz je vektor z tiirozmérného prosto-
ru a veli¢ina, kterd je pfimo méfitelnd a kterou si dovedeme dobfe piedstavit. V kvantové
mechanice je popis i jediné ¢astice mnohem abstraktnéjsi a nasi intuici nepfistupnéjsi:
odehrava se v obecné nekonecné rozmérném komplexnim vektorovém prostoru, jak je vidét
z nasledujiciho postulatu:

L

Postulat I: o stavovém vektoru:

(a) Stav systéemu je v kvantové teorii popsan vektorem v komplexnim Hilbertove prostoru.

(b) Plati princip superpozice: jsou-li y, a v, dva stavové vektory, pak i jejich linedrni
kombinace c\y, + c,y, je rovnéz pripustnym stavem.

* ok k%R

Podle P. A. M. Diraca! budeme tyto stavové vektory nazyvat ket-vektory a znagit| ), napf.
|\|/>. Kdyz jsme vyse pfipsali stavovy vektor jednomu systému, je tieba si uvédomit, ze tento
systém je nahodné vybranym systémem ze souboru identickych systémi. Stavovy vektor
bychom tak mohli stejné dobie pfipsat tomuto souboru kolektivné.2

—

Dirac, P. A. M.: The Principles of Quantum Mechanics. 4. vyd. Oxford University Press 1958.

2 Poznamenejme, ze popsat systém jedinym stavovym vektorem lze pouze v idealnim piipadé — fikame pak,
ze systém je v cistém stavu. Za méné $tastnych okolnosti musime systém popsat nékolika stavovymi vektory
s riznymi vahami — pak fikame, Ze systém je ve smiSeném stavu. Smisenym staviim se podrobné vénujeme v § 9.
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Vinové funkce y(x), které k popisu kvantového systému standardné pouzivaji Gvodni
texty, jsou vyjadfenim stavového vektoru v konkrétni bazi, viz § 6. Stavové vektory (stej-
né jako vlnové funkce) nejsou ,,hmotné* povahy, jako tfeba zhusténi a zfedéni vzduchu
zvukovych vln, ani nejsou pfimo méfitelné jako tfeba intenzity elektrického a magnetické-
ho pole — jsou to pouze matematické konstrukce, z nichz lze vypocitat fyzikalni charakte-
ristiky systému, ktery popisuji.

Princip superpozice (druha ¢ast postulatu) stoji v srdci interferencnich jevi a — rozsi-
fen pfirozené i na ¢asovou evoluci zucastnénych stavli — stanovuje, ze kvantova teorie je
linearni teorii, tj. Ze Casovy vyvoj stavu je zprostitedkovan linearnim operatorem, viz § 8.

Tak jako je stav systému popsan vektorem z Hilbertova prostoru, jsou fyzikalnim veli-
¢indm pripsany operdtory, které piisobi v prostoru téchto vektora.

sk osk sk sk sk

Postulat I1: o méritelnych veli¢inach:

(a) Meritelnym fyzikalnim velicinam odpovidaji v kvantové teorii linearni hermitovské ope-
ratory, jejichz viastni vektory tvori uplny systém' v prostoru stavovych vektorii.

(b) Jediné hodnoty, jichz miize méritelna fyzikalni velicina F nabyvat, jsou vlastni Cisla
operdtoru Ftéto veliciné prirazeného.

sk osk sk sk sk

Mefitelnymi veli¢inami (angl. observables) mame na mysli veli¢iny, jako je tfeba poloha,
rychlost ¢i energie, zatimco ,,neméfitelnymi* rozumime formalné zavedené matematické
veli¢iny, napf. posunuti ¢i rotace v nasem trojrozmérném prostoru £;.

V Gvodnich textech o kvantové mechanice se postuluje, Ze stavové vektory popisujici
jednu ¢4stici jsou zobrazeny jako vinové funkce y(x,,x,,x;) v E;; kartézské soutadnice x,
¢astice a jim odpovidajici hybnosti p,, i = 1,2,3 jsou v prostoru vlnovych funkci reprezento-
vany operatory x, a p,, i = 1,2,3 pisobicimi dle pfedpisu:

)EiW(xpxza)%) =X -\v(xl,xz,x3),

. . 0 .
pi\V(xpxza)%):_lhg\V(xl:xza)%): i=123. (21)

i

Tyto operatory spliuji fundamentalni — takzvané kanonické — komutaéni relace
[)%;a)ek]:()a [ﬁi,f?k]ZO, [fc,,[ak]:ihé‘),.k. (22)

Postulaty I a II jsou dalekosahlym zobecnénim této pomérné nazorné koncepce.

1 Jak dale podrobngji uvedeme, vlastni vektory i téch nejzakladnéjsich operatort nelezi v Hilbertové prostoru.
Kdyz zde mluvime o uplnosti vlastnich vektort v prostoru stavovych vektorti, ml¢ky tedy predpokladame, ze
jako vlastni vektory pfipoustime i vektory z tzv. zobecnéného Hilbertova prostoru (neboli zobecnéné vlastni
vektory), viz dodatek C8.
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€ Uvedena formulace obou postulatd je vyrazné intutivni. Neklade si totiz otazku,
které vektory Hilbertova prostoru jsou pfipustné jako stavy, ani které hermitovské
operatory odpovidaji skutecné pozorovatelnym veli¢inam. Z elementarnich vyklada
kvantové teorie ¢asto vznika dojem, Ze ptipustné vinové funkce museji byt hladké
s druhymi derivacemi a Ze pozorovatelnych majicich vyznam je par, zhruba: poloha,
hybnost, moment hybnosti, kineticka a potencialni energie. S tim vSak nevystaci-
me. Pragmaticka odpoveéd’, implicitné stojici za obéma postulaty je, ze pripustné
vektory a operatory jsou vSechny, které jsou potiebné. Skutecné konzistentni
formulaci vyjadfuje Dvoudilny postulat aplnosti:

Postulat IBIS o stavovém vektoru: kazdy vektor Hilbertova prostoru popisuje pfi-
pustny stav.

Postulat I1BIS o méFitelnych veli¢inach: kazdy hermitovsky operator na Hilbertové
prostoru popisuje né¢jakou pozorovatelnou.

Vyznam postulatu Gplnosti pro kvantovou teorii z matematického hlediska je zfejmy,
tento postulat ma vsak také zasadni vyznam z hlediska operacionalniho a tedy pro
spojeni s experimentem. Z Postulatu [® vyplyva princip superposice (Postulat I (b))
jako korolar. Zanedbavame tedy moznost supervybérovych pravidell, ktera oviem
v nerelativistické oblasti fyziky atomu a jejich konglomeratli ma mizivy vyznam.
Postulat 11 miize zaraZet: operator £ 'X a podobné konstrukty nevypadaji jako
realné pozorovatelné. Rozhodujici zde vsak je, ze tento postulat ptipousti jako pozo-
rovatelné projekéni operatory (viz § 3.2. a dodatek C4), které maji jasny a dokon-
ce zasadni operacionalni vyznam v teorii kvantového méteni, jak bude vysvétleno
v § 5. Z projekenich operatorti pak 1ze sestavit opravdu kazdy hermitovsky (piesnéji:
samosdruzeny — viz dodatek C6) operator. D

Kli¢ovym pojmem matematického aparatu kvantové teorie, jak ukazuje postulat II, je
pojem vlastnich ¢isel operatoru: plati-1i pro nenulovy vektor |u> a néjaky operator A4

Alu)=1|u), 2.3)

1 Supervybé&rova pravidla (superselection rules) se uplatiiuji v neseparabilnich Hilbertovych prostorech kvan-
tové teorie pole. Cely prostor je rozdélen na podprostory (,,sektory*) a superposice vektorti z riznych sektort
je nepiipustna, princip superposice je tedy omezen. Znamy piiklad je zakaz superposice riiznych nabojovych
stavil (charge superselection rule). Také pozorovatelné pusobi vyluéné uvnitt jednotlivych sektorti, maticové
elementy mezi sektory jsou nulové a to pravé vedlo k terminu ,supervybérové pravidlo® jako odkazu na oby-
¢ejna vybeérova pravidla znama tieba z optiky.

Vice o supervybérovych pravidlech nalezne ¢tenai napi. v prehledu z pera klasika tohoto problému:
Wightman, A. S.: Superselection rules; old and new. 11 Nuovo Cimento B 110 (1995), 751. Je v§ak nutno
upozornit na dynamicky indukovana ,,mékka* supervybérova pravidla spojena s dekoherenci, viz Zurek,
W. H: Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75
(2003), 715.

Konec¢né se supervybérova pravidla uplatiuji v moderni teorii kvantové informace, viz napf. Bartlett, S. D. —
Rudolph, T. — Spekkens, R. W.: Reference frames, superselection rules, and quantum information, Rev. Mod.
Phys. 79 (2007), 555.
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fikame, ze |u> je vlastni vektor operatoru Aan je k nému piislusejici vlastni ¢islo. Operator
tak prevadi vlastni vektor ve vektor ,,t¢hoz sméru* lisici se eventualné jen ,,délkou”. Jelikoz
(2.3) je homogenni rovnice, je zaroven s |u> vlastnim vektorem i kazdy vektor k|u>,k #0,
lisici se od |u> pouze délkou. Vzhledem k tomu budeme za rizné vlastni vektory povazovat
jen ty, které jsou linearné nezavislé.

sk osk sk sk sk

Elementarnim ptikladem je jednotkovy operator, ktery budeme znacit 1. Ten libovolny vek-
tor prevadi v sebe sama (jinymi slovy, kazdy vektor je jeho vlastnim vektorem):

11wy =lw)=1]y) 24)
Jak naznaceno, ma tedy jediné vlastni ¢islo, A =1.1

€ Tento operator neni bezvyznamnou hii¢kou. Jednak by spravné mél vystupovat
na pravé stran¢ kanonické komutaéni relace (2.2):[X,, p,]=ihd,, 1, jednak mu odpo-
vida pozorovatelna, a sice jistota registrace. Proto se objevuje na pravé strané relaci
uplnosti vlastnich vektori, ktera bude podrobné vysvétlenav § 3.2. D

Zatimco v kone¢né rozmérném vektorovém prostoru definuje rovnice (2.3) ptimocare fesi-
telnou ulohu, v nekonecné dimenzi vyzaduje problém vlastnich vektord a vlastnich ¢isel
hlubsi analyzu a vede k nutnosti pracovat i s vektory, které vybocuji z Hilbertova prostoru.
K témto formalnim otazkam se nyni obratime.

1.3 MATEMATICKE PROSTREDKY KVANTOVE
MECHANIKY

e

V tomto odstavci jsou soustiedény nejdilezitéjsi definice a vlastnosti matematickych objek-
th, se kterymi v kvantové teorii pracujeme. Klademe tu diiraz mén¢ na vycerpavajici exakt-
ni vyklad, vice na uzitecnost pfi vlastni praci. Také formalni podoba vsech veli¢in a rovnic
je prizptisobena stylu obvyklému ve fyzikalnich textech.

1.3.1 HILBERTUV PROSTOR?

Abstraktni Hilberttiv prostor H je komplexni vektorovy prostor na némz je definovan ska-
larni sou¢in. Jsou-li | /') a |g) dva vektory z H, budeme jejich skalarni soucin znagit jako

1 Jinym nazornym pfikladem je vlastni vektor operatoru rotace v E;. Rotace dle osy n o tthel a. # 0 prevadi
libovolny vektor z E; ve vektor jiny s vyjimkou vektord lezicich podél osy rotace, které nechava beze
zmény. Vektor n je tak vlastnim vektorem operatoru rotace s vlastnim ¢islem rovnym jedné. Rotace a jejich
reprezentace pomoci (unitarnich) operatort jsou piedmétem kap. 5, § 4.

2 Podrobngjsi vyklad vlastnosti vektorovych prostort a Hilbertova prostoru zvlast’ je uveden v dodatku C.
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(f|g)- Z axiomi skalarniho sou¢inu uved'me napt. relaci symetrie: (g|f)=(f|g)", kde
hvézdicka oznacuje komplexni sdruzeni, dale pozitivnost: < f | f > >0 (rovnost plati tehdy
a jen tehdy, kdyz | /) = 0) a antilinearitu v prvnim argumentu: (c¢f |g)=c"(f|g), kde ¢ je
komplexni ¢islo. Skalarni soué¢in umoznuje zavést pojem ortogonality vektort — fikame, ze
|g0> a |\y> jsou kolmé, kdyz <(p|\y> =0 — a pojem velikosti vektort: fikame, ze |\|/> je normo-
vany (na jednicku), kdyz " |(p> " =, /<(p|(p> =1c¢ili <(p|(p> =1

Jednou z implementaci Hilbertova prostoru je prostor L*(Q) viech kvadraticky inte-
grovatelnych komplexnich funkci realné proménné na oblasti Q, v kontextu kvantové teorie
pak mluvime o stavovych vektorech v souradnicové reprezentaci ¢i o vinovych funkcich.
Jsou-li /(x) a g(x) dvé funkce z L*(Q) , jejich skalarni souéin definujeme jako

(f12)=]f (g dx. (3.1.1)

Pti pevném fpredstavuje skalarni soucin < f | g) linearni funkcional, jenz kazdému ketu | g>
prifazuje (komplexni) ¢islo < f | g>. Tyto linearni funkcionaly tvofi rovnéz vektorovy prostor,
jehoz prvky budeme (opét dle Diraca), nazyvat bra-vektory! a znadit < f | Plati tudiz

(/1U2))={7le)-

Vektorovy prostor, jehoz elementy jsou bra-vektory, nazyvame dualni k prostoru ptivod-
nimu. V Hilbertove prostoru je korespondence | f > © < f | jednoznaéna a dualni prostor je
rovnéz Hilbertiiv prostor. Kdybychom v§ak vzali napt. podprostor < — I tvofeny funkce-
mi, které exponencialné klesaji v nekone¢nu, bude dualni prostor &/’ nejen vétsi nez pavod-
ni prostor <, ale i vét$i nez Hilberttiv prostor. Bude totiz obsahovat i funkce, které nejsou
kvadraticky integrabilni (jako napf. rovinnou vinu), ale pro néz existuje skalarni soucin
(3.1.1) s kazdou z funkei z <72 Pravé v tomto smyslu vystupuji v kvantové teorii i zobecnéné
funkce, jako je Diracova &-funkce; podrobnéjsi analyzu nalezne ctenat v dodatku B a C.

Viiméme si, ze de Broglieho vlna, y(x) = 4e™, ktera stéla u zrodu kvantové teorie
jako vilnova funkce popisujici volnou ¢astici, se nekvalifikuje jako pfipustny ,,stavovy
vektor, nebot’ nepatii do L*(E,) — neni totiz na intervalu £, kvadraticky integrabilni.
V principu je mozné omezit matematiku kvantové mechaniky na Hilberttiv prostor, jako
to ucinil J. von Neumann?, ale ¢as dal za pravdu P. A. M. Diracovi, ktery formuloval
kvantovou mechaniku? za pouziti vlastnich funkci (ze spojitého spektra) vybocujicich
z Hilbertova prostoru; teorie distribuci a zavedeni tzv. Gelfandova tripletu jako abstraktni
nadstavby pak dodate¢né poskytly matematické ospravedInéni jeho postupu. Podrobnéji
viz dodatek C.8.

—_

Podle druhé ¢asti anglického vyrazu pro zavorku, bracket: <bra|c | ket).
2 Neumann, J. von: Mathematische Grundlangen der Quantenmechanik. Berlin: Springer Verlag 1932.
Dirac, P. A. M.: The Principles of Quantum Mechanics. 4. vyd. Oxford University Press 1958.

w
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1.3.2 OPERATORY.! VLASTNIi VEKTORY A VLASTNI CiSLA.

Operatory vyskytujici se v kvantové mechanice jsou linearni; jsou-li|u, ), |u, ) libovolné vek-
tory z vektorového prostoru R a ¢, c, komplexni ¢isla, pak operator 4 je linearni, pokud plati:

Izl(cl|ul>+cz|u2>):clzzl

u1>+02A u2>. (3.2.1)

Nadale budeme linearitu operatori automaticky predpokladat.
Operator A' je hermitovsky sdruzeny k 4 na prostoru R, plati-li pro libovolné dva vek-

tory |f>, g> z R vztah:

<f‘1:1g> = <21Tf‘g>. (3.2.2)
Plati-li A" = A ¥ikame, Ze A4 je hermitovsky operator.

Hermitovsky operator P spliyjici podminku PP=Pse nazyva projekéni. Je-li ’u> nor-
movany vektor z R, pak operator

=l 623

je projekéni operator promitajici do sméru |u>, protoze pusobi-li 13; na libovolny ket ’ f >, pak
vysledny vektor miff ,,podél*|u):

P

u

Fy=luls)
Projekéni operatory mizeme scitat; je-li prostor R N-rozmérny a normované vektory |ui>,

N
i=1,....N, jsou vzajemn& kolmé, pak operator B, definovany vztahem B, = »_|u,){u,| pro-
mita na cely prostor R, takze =l

By=u ) (| =1. (3.2.4)

Vztahu (3.2.4) fikame rozklad jednicky a predstavuje podminku uplnosti ortonormalniho
souboru vektort |u,> v R. Rozklad jednicky €asto pouzivame pro formalni upravy a Dira-
cova braketova notace je pro jeho pouziti obzvlasté ucelna. Napt. mizeme psat:
A AA N o oaa N A~V
A=141= 1P,.AP/. =2 Ju)(u, |4 Z|”/><”/|
iJj i=1 j=1

L=

|u ),

4

I
M=

u )u,|. (3.2.5)

1

i

<
Il

1 Matematicky fundovangjsi vyklad vlastnosti operatorti v Hilbertové prostoru je uveden v dodatku C a D. Tam
jsou rovnéz diskutovany problémy vznikajici v nekone¢né dimenzi a problém zobecnénych vlastnich funkci
operatortl.
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Pusobeni operatoru AvR je tudiz zcela popsano matici tohoto operatoru 4; = <u,. |;1|u j> ve
zvolené bazi {|u,)}. Vsimnéme si, Ze plati

A = | ) = (o | A, ) = (o) = o, | ) = (32.6)

takze matice hermitovsky sdruzeného operatoru Al je rovna hermitovsky sdruzené matici
operatoru A.

Veli¢iny, které nejsou pfimo méfitelné, nemusi byt reprezentovany hermitovskymi ope-
ratory (viz nize). Operace rotace ¢i posunuti v prostoru £ jsou v prostoru ketl reprezen-
tovany operatory, které nejsou hermitovské, ale unitdrni. Operator U je unitarni, plati-li:

UUt =00 =1. (3.2.7)
(V nekoneéné rozmérnych prostorech jsou ob¢ relace (3.2.7) podstatné.) Zvolime-li v R

libovolnou ortonormalni bazi ]ui>, i=1,...,N, ma definice (3.2.7) podobu definice unitarni
matice

N N
DU U =D U U, =5, (3.2.8)
i=1 i=1
Jelikoz z definic (3.2.2) a (3.2.7) plyne pro libovolné dva kety ’ f >,| g>

(Ur|Og)=(r|0"Te)=(r]e), (3.2.9)

zachovavaji unitarni operatory ,,0hly“ mezi vektory! a jejich velikost, takZe pfevadéji jednu
ortonormalni bazi u,.>, i=1,...,N, v druhou ortonormalni bazi |Wi>, i=1..,N:

|w)=Ulu,), i=1,..,N. (3.2.10)

Je-li operator A popsan v pivodni bazi matici 4, (viz definici (3.2.5))
n N
Alu)= Z;Aﬁ |”J>>
=

i

pak v nové bazi {| w>} je jeho plisobeni popsano matici 4, definovanou vztahem

A= 4w, G211

coz mizZeme piepsat ve tvaru

1 Uhel mezi vektory v N-rozmérném prostoru miizeme zavést zobecnénim vztahu z tifrozmémého prostoru:
cosoL = uv/‘qu‘.
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UTI:IU|ui>=iA},|u].> (3.2.12)

Matice ||A'|| a ||A|| spojené vztahem
N —|lyst

[41=[v" illio] (3.2.13)
se nazyvaji unitarné ekvivalentni a totéz plati i pro operatory Aad spojenymi vztahy

A=0'40. (3.2.14)
Unitarne ekvivalentni matice a operatory maji mnoho spole¢ného, nebot’ popisuji totéz line-
arni zobrazeni jen v jiné bazi. Maji kupftikladu stejné spektrum (i kdyz jiné vlastni vektory)
a splnuji tytéz komutacni relace.

Predpis (3.2.14) popisuje transformaci operatorti pii zméné baze. Alternativné mtizeme
provést unitarni transformaci ket v téze bazi predpisem

v =Ulv), |0)=U|g).... (3.2.15)

A\|/>:|(p>©A'\y‘>:|(p'>. (3.2.16)

A'=UAU". (3.2.17)

Také tato dvojice operatori Aad je unitarné ekvivalentni. Prvou transformaci nazyvame
pasivni, druhou aktivni. V E, by prvni odpovidala vyjadieni vektort a linearnich zobrazeni
v pooto¢eném soufadném systému, druha vyjadieni pooto¢enych vektort a linearnich zob-
razeni v pevné bazi. S obéma ptipady se v dalsim setkame.

sk osk sk sk sk
Je-li operator F definovén na prostoru R, pak nenulovy vektor | f > € R splnujici relaci

F|fy=2|1), (3.2.18)

se nazyva (jak jsme jiz diive uvedli) vlastni vektor operatoru Fah je odpovidajici vlastni
&islo. Je-li F v (3.2.18) hermitovsky operétor, plati fada v§znamnych vlastnosti (jejichz
dikaz je uveden v dodatcich C a D):
(a) vlastni ¢isla jsou realna,
(b) vlastni vektory lze vzdy volit ortogonalni a jelikoz jejich velikost je libovolna, tak
i ortonormalni. Budeme dale vzdy pfedpokladat, ze vlastni vektory hermitovskych
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operatort reprezentujici pozorovatelné veli¢iny tvoii bazi v prostoru, v némz je
hermitovsky operator definovan, a

(c) je-li G rovné? hermitovsky operator, pak spolecny systém vlastnich vektort FaG
existuje tehdy a jen tehdy, kdyz FaG komutuji.

Jelikoz vlastni ¢isla odpovidaji dle postulatu II (b) méfenym hodnotam fyzikalnich velicin,
musi byt realna, ¢imz je objasnéno, pro¢ pozorovatelné veli¢iny musi byt reprezentovany
hermitovskymi operatory.

Vsiméme si, ze matice hermitovského operatoru v ortonormalni bazi svych vlastnich
vektori je diagonalni:

F=Y | ENEIFIF)E = X|R) 8, (F| = X F) F(F (32.19)

coz mizeme piepsat pomoci projekénich operatort jako

F=3Fh, b=|F)F] (3.2.20)

k

Existuje-1i k vlastnimu ¢islu F, pouze jediny vlastni vektor |Fk>, fikame, ze ¢islo F| je
nedegenerované. Existuje-li naopak takovych (linearné nezavislych) vektort vice,
|Fk,>, i=1,..,s, pakikazdy vektor

|W>=i0i|Fki>, (32.21)
i=1

kde c,,i=1,...,s, jsou libovolné koeficienty, je vlastnim vektorem F s vlastnim ¢islem F.
Tvori-li tyto vektory |FM> ortonormalni systém, pak unitarni transformace U pievadi ptivod-
ni systém vlastnich vektort |ﬂ j>, j=L...,s, vrovnocenny ortonormalni systém vlastnich
vektord If}cj>, Jj=L..,s;:

|Ec;f>:Zk:U/f|Eci>’ J=Ls,. (3.2.22)
=

Poznamenejme, ze vzhledem k potencialni degeneraci vlastnich ¢isel, je obzvlasté vyhodny
zapis (3.2.20) hermitovského operatoru F v bazi svych vlastnich vektort, protoze projekéni
operatory 13,( pak promitaji na cely podprostor vlastnich stavt ptislusnych (degenerované-
mu) vlastnimu ¢islu £} a zapis je invariantni vzhledem k transformacim (3.2.22).

sk osk sk sk sk

Zatimco stavové vektory musi byt vektory z Hilbertova prostoru, Hilberttiv prostor je pfilis
maly, aby v ném uloha na vlastni vektory n¢kterych fundamentalnich operatorti kvantové
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mechaniky méla feseni. Jak snadno nalezneme, maji v soutadnicové reprezentaci vlastni
funkce x s vlastnim ¢islem x, a vlastni funkce p s vlastnim ¢éislem p, tvar:

1 () =8(x—x,), fpo(x>=ﬁew, (3.2.23)

pficemz prvni neni funkci v bézném slova smyslu a druha neni kvadraticky integrabilni (ale
z hlediska Hilbertova prostoru jsou ob¢ stejné ,,singularni®, protoze pii vhodné zméné baze
v Hilbertové prostoru si prohodi mista). Oba operatory maji také spojité spektrum.

Zatimco vlastni vektory patiici k diskrétnimu spektru lezi v Hilbertove prostoru, vlastni
vektory spojitého spektra nikoliv; vlastni vektory diskrétniho spektra lze tudiz normovat
obvyklym zplisobem, zatimco vlastni vektory odpovidajici spojitému spektru Ize normovat
pouze na &-funkci

(f] 1) =802, (3.2.24)

Nechceme-li proto vytadit z pouzivaného matematického aparatu zobecnéné funkce, jako
jsou d-funkee a rovinné viny, musime jako vlastni vektory (funkce) ptipustit i funkce nepa-
ttici do L*(E,). Jak uvidime déle, pfi vypoctu méfitelnych veli¢in se zobecnéné vlastni
funkce vyskytuji v kvantovémechanickém formalismu fakticky pouze ve ,,skalarnich souci-
nech s vinovymi funkcemi z L’. Miizeme proto zmirnit pozadavek na pfipustnost vlastnich
funkci napt. tak, ze pfipustime v definici (3.2.18) vSechna f;, pro néz

[T £ @y dre (E) (3.2.25)

pro kazdé ye L’ (E,). Na takové vlastni funkce pak rozsitime i definici skalarniho sou¢inu.
V tomto smyslu jsou pak piipustné i dive nalezené vlastni funkce operatorti X a p. V pfi-
padé prvni z funkei (3.2.23) se integral (3.2.25) redukuje pfimo na zvolenou funkei y(x),
v piipadé druhé z funkei (3.2.23) je integral (3.2.25) roven Fourierovu obrazu funkce y(x),
ktery patti do L’ (E,), jak se dokazuje v teorii Fourierova integralu.

1.4 ABSTRAKTNi HILBERTUV PROSTOR A HILBERTUV
PROSTOR KONKRETNIHO SYSTEMU

Drive nez piikrocime k dalSim postulatim kvantové teorie, bude Gcelné alespon piedbéz-
né stanovit, jak se vektory a operatory pfislusné zcela abstraktné chapanému Hilbertovu
prostoru vztahuji k realnym fyzikalnim systémim. K dané dimenzi, at’ jiz kone¢né, nebo
spocetné nekone¢né!, piislusi jediny abstraktni unitarni ¢i Hilbertav prostor, ,,stejny* pro

1 Mechanickym systémiim nerelativistické teorie s kone¢nym pocétem stupiiti volnosti odpovida v kvantovém
popisu Hilbertv prostor se spocetné nekoneé¢nou dimenzi (tj. lze v ném zavést ortonormovanou bazi, jejiz
vektory mohou byt o¢islovany). Naproti tomu_v kvantové teorii pole pracujeme s prostory o nespocetné
nekonecné dimenzi. To se tyka jiz problému zdanlivé nendpadnych, jako je zafeni ¢erného télesa, z které¢ho
se vlastn€ pojem kvanta zrodil.
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vSechny systémy. Prifadit prostor stavli k zvolenému systému znamena dat Hilbertovu pro-
storu urcitou vnitini strukturu, napiiklad zavedenim vhodné ortonormované baze. Mluvi se
o sestrojeni Hilbertova prostoru. Jsou tu dvé mozné cesty:

(a) V pripadech, kdy jsme vedeni ndzorem, mizeme za vychozi vzit Postulat I a sta-
voveé vektory zavést prostiednictvim jejich zobrazeni (vzajemné jednozna¢ného) do
prostoru L2(Q)) funkci na konfiguraénim prostoru Q, ktery jsme pfedem intuitivné
vyvolili. To je napt. piipad jedné ¢astice popsany rovnicemi (2.1).

(b) Obecnéjsim a zaroven fyzikalng€jsim postupem je vyjit z Postulatu II a zvolit
zakladni pozorovatelné pro dany systém a jejich charakteristické urcujici vlastnosti.
V daném piipad¢ to znamena vyjit z komutacnich relaci (2.2) a z nich zpétné k (2.1)
dojit — ptiklad takzvaného kanonického kvantovani.

Zajisté by bylo vitané, kdyby pro sestrojeni prostoru stavii k danému systému existova-
lo univerzalni pravidlo, podle kterého by bylo mozno postupovat a které by vystupova-
lo v celém schématu kvantové teorie jako dalsi postulat. To vsak neni v uplnosti mozné
a vlastné pokazdé je nutno postup ,.kvantovani* podrobné¢ posoudit. Je v§ak nékolik obec-
nych voditek, ktera ve vétsiné ptipadi postaci:

1. Pro systémy s klasickou analogii, tedy takové, jejichz pozorovatelné maji vyznam
i v meznim piipadé zanedbani kvantovych efekttl, je kanonické kvantovani podrob-
n¢ diskutovano v nasledujicim odstavci.
dospét také zkoumanim duasledkt symetrie Eukleidova prostoru, jako je jeho homo-
genita a izotropie. To je diskutovano v kap. 5.

3. Ma-li systém anebo jeho casti dodatecné, Cisté kvantové stupné volnosti, je nutno
pro jejich popis vybudovat odpovidajici prostor stavii, zpravidla o kone¢né dimenzi.
Prikladem tu je zavedeni spinu elektronu v nerelativistické teorii; jeho existence je
zde nezavislym postulatem a pro jeho popis je zaveden spinovy prostor dimenze 2.
Tomu je vénovana kap. 6.

4. Pro slozeny systém, tvoteny nékolika podsystémy, je mozno prostor stavli vybudovat
jako direktni soucin prostort stavil téchto podsystému, viz § 4.4.

Je nutno upozornit na odliSnost prvnich tfi bodt od posledniho. Body 1.-3. maji heuris-
ticky raz, poskytuji nam voditko, nikoli jednoznacné platné vysledky. Bod 4. je soucasti
formalismu a ma exaktni deduktivni charakter. Zvlastni postaveni ma bod 1. Konstrukce
Hilbertova prostoru ma v tomto ptipad¢ skuteéné raz kvantovani, tedy postupu, ktery his-
toricky sehral jedine¢nou Glohu: umoznil odrazit se od pevniny klasické fyziky a na barce
kvantovani se vydat na neznamy ocean kvantového svéta. Svlij vyznam sehrava i dnes.
Vztah obou svéti, kvantového a klasického zlstava jednim z klicovych témat kvantové
teorie. Zbytek § 4 je vénovan prvnimu z uvedenych aspektt této problematiky, moznostem
kanonického kvantovani.

- 26 -



1.4.1 SYSTEMY S KLASICKOU ANALOGIi: KARTEZSKE SOURADNICE

Zacneme od kanonického kvantovani v ptipadé, kdy je tento postup zarucen, totiz od zobec-
néni rovnic (2.2) na piipad mnoha ¢astic:

sk osk sk sk sk

Postulat I11: O kanonickém kvantovani kartézskych proménnych
Jsou-li x;, p;, i = 1,..., N kartézské kanonicky sdruzené proménné', pak jejich operdtory
spliuji komutacni relace

[%.p,|=ind,, [%.%,|=]p.p,|=0:i.j=1...N. (4.1.1)

sk osk sk sk sk

Nasim cilem bude z tohoto postulatu odvodit vlastnosti téchto pozorovatelnych a dalSich
veli¢in z nich sestrojenych jako jejich funkce. Oznacme

X=X5eesXys D= Pioeees Py 4.1.2)
a obecnéji pro libovolné zobecnéné soufadnice
q:qla'“aq]va p:plau'apN- (413)

Podobné pro operatory

G=Gssys D= Direes Py (4.1.4)

Z platnosti komutacnich relaci (4.1.1) plyne uplnou indukci, Ze alespon pro kazdou funkci
F(x) resp. F(p), jiz 1ze rozvést v mocninnou fadu, plati pro kazdé s =1,..., N:

5, F(p)]=ih 2

ﬁ@,mfwh%gﬁw, 4.1.5)

s

kde parcialni derivace vpravo provedeme formalné v rozvoji funkce do mocninné fady.?

1 Jsou-lig, ¢, i=1,..,N zobecnéné soufadnice a rychlosti, pak hybnosti p, kanonicky sdruZené se soutadni-
OL . I .

cemi g, jsou definovany vztahem p,; = % kde L je Lagrangeova funkce, jez je pro konzervativni sily dana

jako rozdil kinetické a potenci/z\i/lni energqlé, L =T —V. Hamiltonova funkce, kli¢ova veli¢ina kanonického

formalismu, je dana jako H = Z P,q; — L anezavisi-li Lagrangeova funkce na ¢ase, je rovna celkové energii,
H=T+V. i=1

2 Pro konstanty a linearni funkce tvrzeni trivialn€ plati. Libovolny polynom pak vytvaiime linearni kombinaci
soucintl. Pro komutator souctu a soucinu vsak plati stejna algebraicka pravidla jako pro derivace.
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M¢jme nyni spolecny vlastni vektor vSech (komutujicich) operatort souradnice
floy=alo), i=1,..,N, (4.1.6)

kde g, jsou né&jaka realna ¢isla. Zvolme déle N-tici redlnych Cisel {b,} a pomoci unitarni
transformace definujme vektor

|{b,}> _ e(ih)*IZﬁ,(b,—a,) |(D> — ﬁ'(ﬁ)lqﬁ (417)
S pomoci (4.1.5) dostavame

o B L a
2|00} =F(p)a @) +inz=- F(p]o)

=b,|b,}). (4.1.8)

Protoze ¢isla b, jsou libovolna, znamena to, Ze operatory soufadnice maji neohrani¢ené spo-
jité spektrum vypliujici interval (—oo,+00). TotéZ pochopitelné plati o operatorech hybnosti.

Zatimco plvodni stav (4.1.6) popisuje Castice v mistech a,,i=1,...,N, vektor
|{b,}> =|b,,....by) v (4.1.8) popisuje Castice v mistech b,,i =1,..., N. Operétor

ﬁ(ﬁ) = M Zhi(b-a)
tak popisuje posunuti v konfiguraénim prostoru o vektor b—a = (b ,—a,,...,b, —a,).!

€ Tento vysledek zavisi jen na komuta¢nich relacich (2.2) resp. (4.1.1) (ty je nut-
no pouzit k odvozeni (4.1.5)) a byva oznacovan jako Pauliho veta: jestlize dvojice
samosdruzenych operétori P, Q spliuje vztah [P, Q] =ih, pak oba operatory maji
spojité spektrum vypliujici celou ptimku. D

Linearni obal vektora |{xé }>, tj. normovatelnych linearnich kombinaci a jejich hromadnych
bodd je izomorfni s L’ (E, ), kde N-rozmérny Eukleidiiv prostor vznika jako kartézsky sou-
¢in N intervalll (—oo, +00):

W) = [Tax | {0 W) < w(x) = ()] P). (4.1.9)

Vidime, ze konfiguracni prostor nemusime predpokladat, vznika ptirozenym zplsobem
jako obor méfitelnych hodnot kartézskych souradnic.

Pusobeni operatorti hybnosti p, na linearnim obalu vektori ’{xe}> najdeme vyuzitim
vztahti (4.1.9) a (4.1.7):

1 S operatorem posunuti se znova setkame v kap. 5 pii diskusi homogenity prostoru a roli symetrie v kvantové
mechanice obecné.
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lim%[\V(Xl,"',xr +87""XN)_W(XU"':xr:"'ax/v)]

£—0

= tim L[(fx 3 e 7 [~ (3w (4.1.10)

a tedy

—iha%w(x):«m 5,

¥), 4.1.11)

ktery standardné zapisujeme jako

B ({x W) = hw(x).

V pripad¢ kartézskych proménnych se tedy podafilo splnit kanonické komutaéni relace
ocekavanym zpiisobem,

=X, p =-ih—, i=1..,N. (4.1.12)

¢ Bylo dokazano (véta Stoneova-von Neumannova), ze vSechny ireducibilni
reprezentace kanonickych komutacnich relaci (4.1.1) jsou unitarné ekvivalentni
s (4.1.12). Dulezité jsou napiiklad unitarni transformace, které neméni operatory
soufadnic. Ty jsou tvaru U = e ™), kde ®(x,) je realna funkce. Dostavame

THRTT = i ®GE) & i) _
UxU=¢e""xe =

U'pU =& p e = p — 1o d(%,). (4.1.13)
Je poucné ovérit, ze transformované hybnosti navzajem komutuji. Tato transformace
je ptikladem tzv. kalibracni transformace, ktera je lokalni a spoc¢iva vlastné v prefa-
zovani vektor® baze: U|{x,}) = e’ |{x,}), vizkap. 13, § 2.1. D

Dalsi pozorovatelné budou popsany operatory, které rovnéz vyvodime z klasické analo-
gie, ovsem s uvazenim nekomutativnosti zékladnich operatorti. Uvazujeme systém 7 castic
a pro soufadnice a hybnosti pouZijeme vektorové podoby. Tedy 7, =X, e, + X ,e, + X ,e;,
kdee,,i =1,2,3 jsou jednotkové vektory ve sméru soutadnych os, podobné p,. Zpét k inde-
xovani (4.1.4) vede predpis Ju > i,J =1,...,n; u=1,2,3;.i=1,..., N =3n. Nejdulezitej-
simi priklady, kdy nevznikaji tézkosti jsou:

R= & m,)" Sm,F, Polohovy vektor t&zigte

P=Yp , Celkova hybnost soustavy
J

L= 2Fxp, Celkovy moment hybnosti
J
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T=%02m)" p Celkova kineticka energie
J

Potencialni energie dana vnéjsimi poli, parovymi

V=SVOF)+XVDF, F)+... . )
77 ;) K (7 Fi) interakcemi atd.

Hamiltonian pro konzervativni systém rovny

H=T+V ) -
celkové energii

Tvar uvedenych veli¢in je shodny s klasickymi vyrazy, protoze v souéinech vystupuji jen
komutujici operatory (i u momentu hybnosti se ve vektorovém sou¢inu nasobi nestejné
soufadnice a hybnosti).

Tam, kde kanonicky sdruzené veli¢iny vystupuji v soucinu, je piechod od klasickych
vyrazl k odpovidajicim kvantovym pozorovatelnym nesnadny. Uvazujme jediny par kano-
nickych proménnych x a p, xp — px = ih. Co piitadime klasické veli¢iné xp? V nejjedno-
dussich pfipadech provedeme ,,symetrizaci®, aby vznikla kvantova pozorovatelna, tedy
samosdruzeny (,,hermitovsky*) operator:

W —>%(fcf7+ ) (4.1.14)

To je ovsem heuristicky krok a jeho opravnénost mizeme posoudit az dodate¢né.

Priklad operatoru }{p + pt} vypada ponékud uméle, ale ve skutecnosti se vyskytuje
dosti ¢asto. Napiiklad unitarni operator zmény méfitka ptisobici na vinovou funkci podle
vztahu

UM w(x) =1 y(x), A>0

ma operatorovou podobu

N L L gp+ pxlink
U(k)=e“{ ot (4.1.15)
Chapeme-li x, p podle konvence (4.1.4), plati tento vztah beze zmény i ve vicerozmérném
pripadé. K tomu se jeste vratime v § 9.6 pii odvozovani véty o virialu.

Znamgjsim prikladem tohoto symetrizacniho postupu je konstrukce operatoru radialni
slozky hybnosti, jez je v klasické teorii kanonicky sdruzena k velikosti privodice r =|r |;

e

dava operator

>

r . F. .r
p,=—p—>pr=%{7p+p:}, (4.1.16)
r r r
jenz ma ve sférickych souradnicich podobu

D, :—ihlir. (4.1.17)
ror

=30 -



	Obálka
	Obsah
	Úvod
	Část první – Formální stavba kvantové mechaniky
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