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Úvod

Kvantová teorie je historicky nejúspěšnější fyzikální teorií. Za téměř 90 let od svého vzniku 
dovolila popsat nebo dokonce předpovědět množství různorodých jevů o impozantní šíři: 
od fyziky „elementárních“ částic přes stavbu jádra až po chemické reakce a pohyb elektro-
nů v integrovaných obvodech. Kvantová teorie také zásadním způsobem změnila fyzikální 
obraz světa, ze kterého fyzici – teoretici i experimentátoři – stejně jako pracovníci dalších 
přírod ních věd musejí vycházet. Takovému významu odpovídá ve světové literatuře i roz-
sáhlá a stále narůstající knihovna učebnic kvantové teorie lišících se obtížností, rozsahem 
i pojetím. To platí i o její nejpočetnější podknihovně – učebnicích kvantové mechaniky, 
v nichž se nepou žívá kvantová teorie pole. Učebnice této úrovně pro mnohé studenty zna-
menají vrchol setkání s kvantovou teorií. K nim se řadí i tato kniha, psaná ovšem česky 
a zaplňující určitou mezeru v české učebnicové literatuře.

Výběr učebnic kvantové mechaniky v češtině není totiž příliš rozsáhlý: pouze v knihov-
nách a antikvarátech můžeme nalézt starší překlady dvou učebnic, D. I. Blochinceva 
a A. S. Davydova1. Dostupná, nyní již v druhém vydání, je tak především dvoudílná učebni-
ce prof. J. Formánka2, která svou náročností a celkovou koncepcí je určena hlavně teoretic-
kým fyzikům. Konečně nedávná kniha prof. L. Skály3 je koncipována na bakalářské úrovni 

1 Davydov, A. S.: Kvantová mechanika. Praha: SPN 1978; Blochincev, D. I.: Základy kvantové mechaniky. 
Praha: ČSAV 1956.

2 Formánek, J.: Úvod do kvantové teorie I, II. Praha: Academia 2004.
3 Skála L.: Úvod do kvantové mechaniky. Praha: Academia 2005; Praha: Nakladatelství Karolinum 2012.
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studia fyziky a věnována moderně pojatému úvodu do kvantové teorie a řešení standardních 
základ ních úloh. Znalost základů kvantové fyziky v rozsahu této knihy je vhodným před-
pokladem ke studiu naší učebnice.

Tato kniha je primárně určena studentům magisterského studia fyziky, aplikované 
a technické fyziky, kteří se zaměřují na fyziku atomárních systémů a zabývají se tématy, 
jako je studium elektronových stavů v atomech, molekulách a pevných látkách, transportní 
jevy nebo interakce elektronů se zářením. Výběr témat a rozsah jejich zpracování byl volen 
tak, že kniha může sloužit jako standardní učebnice pro výuku kvantové mechaniky v magi-
sterském a zčásti i v doktorském studiu. Autoři se při psaní mohli opírat jednak o vlastní 
badatelskou praxi, jednak o mnohaleté zkušenosti s přednášením kvantové mechaniky na 
různých úrov ních. Pro magisterské studium na Matematickofyzikální fakultě Univerzity 
Karlovy bylo ur čeno i naše dvoudílné skriptum Univerzity Karlovy Kvantová teorie I, II, 
dávno zcela roze brané.1 Na jeho praxí prověřeném půdorysu jsme stavěli, i když většina 
materiálu byla nově zpracována a rozšířena. Měli jsme přitom na mysli i druhé poslání 
knihy, jejíž středně pokročilá úroveň a styl výkladu jsou vhodné i pro „druhé čtení“ kurzu 
kvantové mechaniky zá jemci z řad fyziků i absolventů dalších přírodovědných oborů nebo 
přírodovědně orientovaných oborů technických. Většina témat je proto vykládána o krok 
dále, než je v učebnicích kvantové mechaniky ustálené. Doplňkový materiál je často vlo-
žen do odstavců vymezených znaky º». Poměrně rozsáhlý je i poznámkový aparát, jednak 
s věcnými dodatky, jednak s citacemi na monografie i původní práce tak, aby se k nim 
zájemce o daný problém mohl obrátit.

Výklady jsou vedeny explicitně, nic není odsunuto do úloh nebo cvičení. Zájemce 
o řešené úlohy z kvantové mechaniky se může obrátit na knihu jednoho z nás2. Při psaní 
učeb nice jsou autoři postaveni před dvě volby: mají se držet ustálených vzorů, nebo usilovat 
o ori ginalitu? Naší snahou bylo sledovat „moderní pojetí“, ale neodchylovat se výrazně od 
stan dardu s cílem, aby kniha dovolovala bezproblémové navázání na odbornou literaturu. 
Po dobné úvahy nás vedly také k tomu, abychom se důsledně drželi standardní interpretace, 
a to jak při výkladu postulátů kvantové mechaniky, tak i při studiu jednotlivých kvantových 
jevů. Do kvantové metafyziky se nepouštíme, pokud by se snad za to nemohl pokládat 
výklad von Neumannovy teorie měření (kap. 1, § 9.5) a teorie dekoherence (kap. 1, § 9.8), 
které jsou ovšem rovněž konzervativní. Také pokud jde o matematický aparát, snažili jsme 
se, aby použitá ma tematika nevybočovala příliš z ustálených zvyklostí učebnic kvantové 
mechaniky. Na druhé straně určité techniky funkcionální analýzy jsou běžně používány 
v současné fyzikální litera tuře, a proto jsme pokládali za vhodné připojit v dodatcích struč-
ný přehled temperovaných distribucí a některých pojmů funkcionální analýzy způsobem, 
který těsně navazuje na hlavní text a odvolává se na fyzikální motivaci.

V textu je důsledně používáno dvojích jednotek, jednak soustavy SI, jednak atomo vých 
jednotek, tedy jednotek, v nichž jsou náboj a hmotnost elektronu spojeny s (redukovanou) 
Planckovou konstantnou a permitivitou vakua vztahem: e me= = = =4 10πε  . Otázce hod-
not základních konstant a systému atomových jednotek je věnován první dodatek.

1 Kvantová Mechanika I. Univerzita Karlova 1985; 1992. Kvantová Mechanika II. Univerzita Karlova 1990, 1998.
2 Klíma, J., Šimurda, M.: Sbírka problémů z kvantové teorie. Praha: Academia 2006.
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Vzhledem k širokému spektru probíraných témat je rozsah knihy značný, a proto jsme 
se rozhodli rozdělit ji na dva samostatné svazky. Předpokládáme, že čtenář jistý úvod do 
kvantové teorie již absolvoval (např. v rozsahu zmíněné učebnice prof. L. Skály). Kniha 
za číná poměrně rozsáhlým shrnutím formální stavby kvantové mechaniky a potřebného 
mate matického aparátu, přičemž vykládané pojmy jsou ilustrovány řešením vybraných pro-
blémů pohybu jedné částice v časově neproměnných vnějších polích (kap. 1–3). Tato část 
obsa huje i ne zcela standardní partie, jako jsou výklad Aharonova-Bohmova jevu, výpočet 
kon trastu v kvantovém interferometru a úvod do teorie dekoherence.

Výklad pohybu v centrálním poli, symetrie a spinu (kap. 4–6) je jistým prohloube-
ním standardních postupů – spektrum atomu vodíku je odvozeno bezreprezentačně, teorie 
symetrie obsahuje elementy teorie grup a jejích reprezentací a v rámci výkladu spinu je 
pro počítána spinová rezonance a diskutován EPR paradox a Bellova nerovnost. Spin je 
pak zave den znovu při výkladu Diracovy rovnice (kap. 7) a znovu ilustrován výpočtem 
hyperjem ného rozštěpení základního stavu atomu vodíku.

Technické partie – variační princip, poruchový počet nečasový i časový (kap. 8–9) jsou 
ilustrovány jejich aplikací na výpočty atomových a molekulárních energetických hladin 
(kap. 10) a výkladem semiklasické a kvantové teorie interakce atomu se zářením (kap. 11).

Velká pozornost je věnována řešení mnohačásticového problému v kvantové mecha nice 
(kap. 10 a 11), který hraje zásadní roli při všech výpočtech složitějších systémů. Jak „brute 
force method“, tak „mean field method“ jsou podrobně diskutovány. Prvá z nich vý počty 
hladin atomu helia a vodíkové molekuly, druhá Hartreeho-Fockovou teorií a její apli kací na 
systematiku atomových hladin. Celá jedna kapitola (kap. 11) je věnována výpočtům celko-
vých energií a problému korelace metodou funkcionálu hustoty (DFT), která po prvot ních 
úspěších při použití v rozlehlých systémech se stala i přední metodou kvantové chemie.

Naproti tomu teorie rozptylu (kap. 12), se omezuje na elastický rozptyl.1 O to podrob-
něji je vykládán rozptyl na sféricky symetrickém potenciálu mající četné aplikace v teorii 
kondenzovaných soustav.

Interakce s elektromagnetickým zářením (kap. 13) je vykládána na dvou úrovních – 
jako semiklasická (absorpce a emise záření, Kubova formule) i plně kvantová (chaotické 
a koherentní záření, jednofotonové a dvoufotonové procesy). Kvantová teorie záření je 
ilustro vána podrobným řešením interakce záření s dvouhladinovým atomem, v jehož rámci 
je (ne relativisticky) počítán i Lambův posuv.

Jak už bylo uvedeno, kniha obsahuje řadu matematických dodatků vysvětlujících zá kla-
dy teorie distribucí, vlastnosti prostorů kvantové mechaniky, zavedení zobecněných vlast-
ních funkcí, operátorový počet a další základní pojmy funkcionální analýzy.

Jan Klíma, Bedřich Velický

Matematicko-fyzikální fakulta
Univerzita Karlova v Praze
Praha, 2008–2014

1 Teorie rozptylu v mnohem širším rozsahu je podrobně vykládána v dříve citované učebnici J. Formánka.
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v současné fyzikální litera tuře, a proto jsme pokládali za vhodné připojit v dodatcích struč-
ný přehled temperovaných distribucí a některých pojmů funkcionální analýzy způsobem, 
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V textu je důsledně používáno dvojích jednotek, jednak soustavy SI, jednak atomo vých 
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1 Kvantová Mechanika I. Univerzita Karlova 1985; 1992. Kvantová Mechanika II. Univerzita Karlova 1990, 1998.
2 Klíma, J., Šimurda, M.: Sbírka problémů z kvantové teorie. Praha: Academia 2006.
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Vzhledem k širokému spektru probíraných témat je rozsah knihy značný, a proto jsme 
se rozhodli rozdělit ji na dva samostatné svazky. Předpokládáme, že čtenář jistý úvod do 
kvantové teorie již absolvoval (např. v rozsahu zmíněné učebnice prof. L. Skály). Kniha 
za číná poměrně rozsáhlým shrnutím formální stavby kvantové mechaniky a potřebného 
mate matického aparátu, přičemž vykládané pojmy jsou ilustrovány řešením vybraných pro-
blémů pohybu jedné částice v časově neproměnných vnějších polích (kap. 1–3). Tato část 
obsa huje i ne zcela standardní partie, jako jsou výklad Aharonova-Bohmova jevu, výpočet 
kon trastu v kvantovém interferometru a úvod do teorie dekoherence.

Výklad pohybu v centrálním poli, symetrie a spinu (kap. 4–6) je jistým prohloube-
ním standardních postupů – spektrum atomu vodíku je odvozeno bezreprezentačně, teorie 
symetrie obsahuje elementy teorie grup a jejích reprezentací a v rámci výkladu spinu je 
pro počítána spinová rezonance a diskutován EPR paradox a Bellova nerovnost. Spin je 
pak zave den znovu při výkladu Diracovy rovnice (kap. 7) a znovu ilustrován výpočtem 
hyperjem ného rozštěpení základního stavu atomu vodíku.

Technické partie – variační princip, poruchový počet nečasový i časový (kap. 8–9) jsou 
ilustrovány jejich aplikací na výpočty atomových a molekulárních energetických hladin 
(kap. 10) a výkladem semiklasické a kvantové teorie interakce atomu se zářením (kap. 11).

Velká pozornost je věnována řešení mnohačásticového problému v kvantové mecha nice 
(kap. 10 a 11), který hraje zásadní roli při všech výpočtech složitějších systémů. Jak „brute 
force method“, tak „mean field method“ jsou podrobně diskutovány. Prvá z nich vý počty 
hladin atomu helia a vodíkové molekuly, druhá Hartreeho-Fockovou teorií a její apli kací na 
systematiku atomových hladin. Celá jedna kapitola (kap. 11) je věnována výpočtům celko-
vých energií a problému korelace metodou funkcionálu hustoty (DFT), která po prvot ních 
úspěších při použití v rozlehlých systémech se stala i přední metodou kvantové chemie.

Naproti tomu teorie rozptylu (kap. 12), se omezuje na elastický rozptyl.1 O to podrob-
něji je vykládán rozptyl na sféricky symetrickém potenciálu mající četné aplikace v teorii 
kondenzovaných soustav.

Interakce s elektromagnetickým zářením (kap. 13) je vykládána na dvou úrovních – 
jako semiklasická (absorpce a emise záření, Kubova formule) i plně kvantová (chaotické 
a koherentní záření, jednofotonové a dvoufotonové procesy). Kvantová teorie záření je 
ilustro vána podrobným řešením interakce záření s dvouhladinovým atomem, v jehož rámci 
je (ne relativisticky) počítán i Lambův posuv.

Jak už bylo uvedeno, kniha obsahuje řadu matematických dodatků vysvětlujících zá kla-
dy teorie distribucí, vlastnosti prostorů kvantové mechaniky, zavedení zobecněných vlast-
ních funkcí, operátorový počet a další základní pojmy funkcionální analýzy.

Jan Klíma, Bedřich Velický

Matematicko-fyzikální fakulta
Univerzita Karlova v Praze
Praha, 2008–2014

1 Teorie rozptylu v mnohem širším rozsahu je podrobně vykládána v dříve citované učebnici J. Formánka.
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/1/  

Matematický aparát  
a principy kvantové mechaniky

1.1 ÚVOD

I když v této knize budujeme formální aparát kvantové teorie systematicky a od začátku, 
předpokládáme, že čtenář je již obeznámen s historií vzniku a úvodní formulací kvantové 
me chaniky a pojmy jako vlnová funkce, relace neurčitosti, časová a nečasová Schrödin-
gerova rovnice jsou mu známé – přinejmenším v případě pohybu jedné částice v jedné 
dimenzi. Jak je v pokročilejších učebnicích kvantové mechaniky obvyklé, shrnujeme proto 
formalismus do několika postulátů, které ilustrujeme příklady. Na druhé straně nám nejde 
o axiomatiku kvantové mechaniky a postuláty jsou vysloveny tak, aby jejich znění bylo 
srozumitelné širo kému okruhu čtenářů s minimální průpravou základů kvantové mechaniky 
a matematiky.

I tak je kvantová mechanika po matematické stránce obtížná a používaný aparát přesa-
huje běžné matematické vzdělání fyziků, přinejmenším v době, kdy je jim obsáhlejší kurs 
kvantové teorie běžně přednášen. Proto jsme do textu – jak je rovněž zvykem – zařadili 
i stručné shrnutí používaného matematického aparátu, § 3. Zařadili jsme ho za prvé dva 
postu láty, z nichž vyplývá, které pojmy lineární algebry a funkcionální analýzy (zejmé-
na vlastnos ti Hilbertova prostoru) se dostaly do kvantověmechanického popisu přírodních 
zákonů. Exaktnější výklad použité matematiky (lineárních prostorů, otázek konvergence 
v nekonečně rozměrných prostorech, vlastností operátorů, základů teorie distribucí apod.) 
je pak obsahem matematických dodatků B–D.

/1/ Matematický aparát a principy kvantové mechaniky
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Zvláště kontroverzní částí kvantově mechanického popisu přírody je teorie měře-
ní; ko daňská interpretace zavádějící „redukci vlnové funkce“ sice pragmaticky obchází 
řadu po tíží, ale z hlediska uživatele většinou vyhovuje, proto i my se jí přidržíme (§ 5). 
Z moderněj ších teorií, které jdou za interpretaci kodaňské školy, se stručně zmíníme o teorii 
dekoherence (§ 9.8).

Smíšené stavy a jejich popis pomocí matice hustoty, které dovršují formální schéma 
kvantové mechaniky, umožňují popis otevřených systémů a jsou odrazovým můstkem 
kvan tové statistiky v rovnováze i mimo rovnováhu, jsou zavedeny a analyzovány v § 9.

Diskuse EPR paradoxu a Bellových nerovností, které dokreslují zvláštnosti popisu pří rody 
kvantovou mechanikou, je standardně vykládána úvahami o měření na singletním stavu dvou 
polovičních spinů, a proto je odložena do kap. 6, kde pojednáme o spinu a jejich sklá dání.

Vyložené pojmy jsou ilustrovány podrobnou diskusí tří systémů: lineárního harmonic-
kého oscilátoru, volné částice a nabité částice v konstantním magnetickém poli.

1.2 REPREZENTACE STAVŮ A FYZIKÁLNÍCH VELIČIN

V klasické fyzice je pohyb částice popsán znalostí její trajektorie. Získáme ji řešením 
klasic kých pohybových rovnic, známe-li počáteční podmínku, jíž je stav částice v jednom 
časovém okamžiku: její okamžitá poloha a okamžitá rychlost (nebo hybnost). Výsledkem 
je závislost polohového vektoru částice na čase, r( )t , což je vektor z třírozměrného prosto-
ru a veličina, která je přímo měřitelná a kterou si dovedeme dobře představit. V kvantové 
mechanice je po pis i jediné částice mnohem abstraktnější a naší intuici nepřístupnější: 
odehrává se v obecně nekonečně rozměrném komplexním vektorovém prostoru, jak je vidět 
z následujícího postu látu:

* * * * *

Postulát I: o stavovém vektoru:
(a) Stav systému je v kvantové teorii popsán vektorem v komplexním Hilbertově pro storu.
(b) Platí princip superpozice: jsou-li ψ 1 a ψ2 dva stavové vektory, pak i jejich line ární 

kombinace c c1 1 2 2ψ ψ+  je rovněž přípustným stavem.

* * * * *

Podle P. A. M. Diraca1 budeme tyto stavové vektory nazývat ket-vektory a značit , např. 
ψ . Když jsme výše připsali stavový vektor jednomu systému, je třeba si uvědo mit, že tento 
systém je náhodně vybraným systémem ze souboru identických systémů. Stavový vektor 
bychom tak mohli stejně dobře připsat tomuto souboru kolektivně.2

1 Dirac, P. A. M.: The Principles of Quantum Mechanics. 4. vyd. Oxford University Press 1958.
2 Poznamenejme, že popsat systém jediným stavovým vektorem lze pouze v ideálním případě – říkáme pak, 

že systém je v čistém stavu. Za méně šťastných okolností musíme systém popsat několika stavovými vektory 
s různými vahami – pak říkáme, že systém je ve smíšeném stavu. Smíšeným stavům se podrobně věnujeme v § 9. 
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Vlnové funkce ψ( )x , které k popisu kvantového systému standardně používají úvodní 
texty, jsou vyjádřením stavového vektoru v konkrétní bázi, viz § 6. Stavové vektory (stej-
ně jako vlnové funkce) nejsou „hmotné“ povahy, jako třeba zhuštění a zře dění vzduchu 
zvuko vých vln, ani nejsou přímo měřitelné jako třeba intenzity elektric kého a magnetické-
ho pole – jsou to pouze matematické konstrukce, z nichž lze vypočí tat fyzikální charakte-
ristiky sys tému, který popisují.

Princip superpozice (druhá část postulátu) stojí v srdci interferenčních jevů a – rozší-
řen přirozeně i na časovou evoluci zúčastněných stavů – stanovuje, že kvantová te orie je 
lineární teorií, tj. že časový vývoj stavu je zprostředkován lineárním operátorem, viz § 8.

Tak jako je stav systému popsán vektorem z Hilbertova prostoru, jsou fyzikálním veli-
činám připsány operátory, které působí v prostoru těchto vektorů.

* * * * *

Postulát II: o měřitelných veličinách:
(a) Měřitelným fyzikálním veličinám odpovídají v kvantové teorii lineární hermitovské ope-

rátory, jejichž vlastní vektory tvoří úplný systém1 v prostoru stavových vektorů.
(b) Jediné hodnoty, jichž může měřitelná fyzikální veličina F nabývat, jsou vlastní čísla 

operátoru ÆFtéto veličině přiřazeného.

* * * * *

Měřitelnými veličinami (angl. observables) máme na mysli veličiny, jako je třeba poloha, 
rychlost či energie, zatímco „neměřitelnými“ rozumíme formálně zavedené matematické 
veli činy, např. posunutí či rotace v našem trojrozměrném prostoru E3.

V úvodních textech o kvantové mechanice se postuluje, že stavové vektory popisující 
jednu částici jsou zobrazeny jako vlnové funkce ψ( , , )x x x1 2 3  v E3; kartézské souřadnice xi  
částice a jim odpovídající hybnosti pi, i = 1,2,3 jsou v prostoru vlnových funkcí reprezento-
vány operátory Æ Æ , , ,x p ii i a  =1 2 3 i = 1,2,3 působícími dle předpisu:

Æ ( , , ) ( , , ),

Æ ( , , ) ( ,

x x x x x x x x

p x x x i
x

x x

i i

i
i

ψ ψ

ψ ψ

1 2 3 1 2 3

1 2 3 1

= ⋅

= −
∂

∂
 22 3 1 2 3, ), , , .x i =  (2.1)

Tyto operátory splňují fundamentální – takzvané kanonické – komutační relace

[ Æ , Æ ] , [ Æ , Æ ] , [ Æ , Æ ]x x p p x p ii k i k i k i k= = =0 0 δ . (2.2)

Postuláty I a II jsou dalekosáhlým zobecněním této poměrně názorné koncepce.

1 Jak dále podrobněji uvedeme, vlastní vektory i těch nejzákladnějších operátorů neleží v Hilbertově prostoru. 
Když zde mluvíme o úplnosti vlastních vektorů v prostoru stavových vektorů, mlčky tedy předpokládáme, že 
jako vlastní vektory připouštíme i vektory z tzv. zobecněného Hilbertova prostoru (neboli zobecněné vlastní 
vektory), viz dodatek C8.
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1.2 REPREZENTACE STAVŮ A FYZIKÁLNÍCH VELIČIN

V klasické fyzice je pohyb částice popsán znalostí její trajektorie. Získáme ji řešením 
klasic kých pohybových rovnic, známe-li počáteční podmínku, jíž je stav částice v jednom 
časovém okamžiku: její okamžitá poloha a okamžitá rychlost (nebo hybnost). Výsledkem 
je závislost polohového vektoru částice na čase, r( )t , což je vektor z třírozměrného prosto-
ru a veličina, která je přímo měřitelná a kterou si dovedeme dobře představit. V kvantové 
mechanice je po pis i jediné částice mnohem abstraktnější a naší intuici nepřístupnější: 
odehrává se v obecně nekonečně rozměrném komplexním vektorovém prostoru, jak je vidět 
z následujícího postu látu:

* * * * *

Postulát I: o stavovém vektoru:
(a) Stav systému je v kvantové teorii popsán vektorem v komplexním Hilbertově pro storu.
(b) Platí princip superpozice: jsou-li ψ 1 a ψ2 dva stavové vektory, pak i jejich line ární 

kombinace c c1 1 2 2ψ ψ+  je rovněž přípustným stavem.

* * * * *

Podle P. A. M. Diraca1 budeme tyto stavové vektory nazývat ket-vektory a značit , např. 
ψ . Když jsme výše připsali stavový vektor jednomu systému, je třeba si uvědo mit, že tento 
systém je náhodně vybraným systémem ze souboru identických systémů. Stavový vektor 
bychom tak mohli stejně dobře připsat tomuto souboru kolektivně.2

1 Dirac, P. A. M.: The Principles of Quantum Mechanics. 4. vyd. Oxford University Press 1958.
2 Poznamenejme, že popsat systém jediným stavovým vektorem lze pouze v ideálním případě – říkáme pak, 

že systém je v čistém stavu. Za méně šťastných okolností musíme systém popsat několika stavovými vektory 
s různými vahami – pak říkáme, že systém je ve smíšeném stavu. Smíšeným stavům se podrobně věnujeme v § 9. 
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Vlnové funkce ψ( )x , které k popisu kvantového systému standardně používají úvodní 
texty, jsou vyjádřením stavového vektoru v konkrétní bázi, viz § 6. Stavové vektory (stej-
ně jako vlnové funkce) nejsou „hmotné“ povahy, jako třeba zhuštění a zře dění vzduchu 
zvuko vých vln, ani nejsou přímo měřitelné jako třeba intenzity elektric kého a magnetické-
ho pole – jsou to pouze matematické konstrukce, z nichž lze vypočí tat fyzikální charakte-
ristiky sys tému, který popisují.

Princip superpozice (druhá část postulátu) stojí v srdci interferenčních jevů a – rozší-
řen přirozeně i na časovou evoluci zúčastněných stavů – stanovuje, že kvantová te orie je 
lineární teorií, tj. že časový vývoj stavu je zprostředkován lineárním operátorem, viz § 8.

Tak jako je stav systému popsán vektorem z Hilbertova prostoru, jsou fyzikálním veli-
činám připsány operátory, které působí v prostoru těchto vektorů.

* * * * *

Postulát II: o měřitelných veličinách:
(a) Měřitelným fyzikálním veličinám odpovídají v kvantové teorii lineární hermitovské ope-

rátory, jejichž vlastní vektory tvoří úplný systém1 v prostoru stavových vektorů.
(b) Jediné hodnoty, jichž může měřitelná fyzikální veličina F nabývat, jsou vlastní čísla 

operátoru ÆFtéto veličině přiřazeného.

* * * * *

Měřitelnými veličinami (angl. observables) máme na mysli veličiny, jako je třeba poloha, 
rychlost či energie, zatímco „neměřitelnými“ rozumíme formálně zavedené matematické 
veli činy, např. posunutí či rotace v našem trojrozměrném prostoru E3.

V úvodních textech o kvantové mechanice se postuluje, že stavové vektory popisující 
jednu částici jsou zobrazeny jako vlnové funkce ψ( , , )x x x1 2 3  v E3; kartézské souřadnice xi  
částice a jim odpovídající hybnosti pi, i = 1,2,3 jsou v prostoru vlnových funkcí reprezento-
vány operátory Æ Æ , , ,x p ii i a  =1 2 3 i = 1,2,3 působícími dle předpisu:

Æ ( , , ) ( , , ),

Æ ( , , ) ( ,

x x x x x x x x

p x x x i
x

x x

i i

i
i

ψ ψ

ψ ψ

1 2 3 1 2 3

1 2 3 1

= ⋅

= −
∂

∂
 22 3 1 2 3, ), , , .x i =  (2.1)

Tyto operátory splňují fundamentální – takzvané kanonické – komutační relace

[ Æ , Æ ] , [ Æ , Æ ] , [ Æ , Æ ]x x p p x p ii k i k i k i k= = =0 0 δ . (2.2)

Postuláty I a II jsou dalekosáhlým zobecněním této poměrně názorné koncepce.

1 Jak dále podrobněji uvedeme, vlastní vektory i těch nejzákladnějších operátorů neleží v Hilbertově prostoru. 
Když zde mluvíme o úplnosti vlastních vektorů v prostoru stavových vektorů, mlčky tedy předpokládáme, že 
jako vlastní vektory připouštíme i vektory z tzv. zobecněného Hilbertova prostoru (neboli zobecněné vlastní 
vektory), viz dodatek C8.
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º Uvedená formulace obou postulátů je výrazně intutivní. Neklade si totiž otázku, 
které vektory Hilbertova prostoru jsou přípustné jako stavy, ani které hermitovské 
operátory odpovídají skutečně pozorovatelným veličinám. Z elementárních výkladů 
kvantové teorie často vzniká dojem, že přípustné vlnové funkce musejí být hladké 
s druhými derivacemi a že pozorovatelných majících význam je pár, zhruba: poloha, 
hybnost, moment hybnosti, kinetická a potenciální energie. S tím však nevystačí-
me. Pragmatická odpověď, implicitně stojící za oběma postuláty je, že přípustné 
vektory a operátory jsou všechny, které jsou potřebné. Skutečně konzistentní 
formulaci vyjadřuje Dvoudílný postulát úplnosti:

Postulát IBIS o stavovém vektoru: každý vektor Hilbertova prostoru popisuje pří-
pustný stav.
Postulát IIBIS o měřitelných veličinách: každý hermitovský operátor na Hil bertově 
prostoru popisuje nějakou pozorovatelnou.

Význam postulátu úplnosti pro kvantovou teorii z matematického hlediska je zřejmý, 
tento postulát má však také zásadní význam z hlediska operacionálního a tedy pro 
spojení s experimentem. Z Postulátu Ibis vyplývá princip superposice (Postulát I (b)) 
jako korolár. Zanedbáváme tedy možnost supervýběrových  pravidel1, která ovšem 
v ne relativistické oblasti fyziky atomů a jejich konglomerátů má mizivý význam. 
Po stulát IIbis může zarážet: operátor ÆÆ Æxp x-1  a podobné konstrukty nevypadají jako 
reálně po zorovatelné. Rozhodující zde však je, že tento postulát připouští jako pozo-
rovatelné projekční operátory (viz § 3.2. a dodatek C4), které mají jasný a dokon-
ce zásadní ope racionální význam v teorii kvantového měření, jak bude vysvětleno 
v § 5. Z projekčních operátorů pak lze sestavit opravdu každý hermitovský (přesněji: 
samosdružený – viz dodatek C6) operátor. »

Klíčovým pojmem matematického aparátu kvantové teorie, jak ukazuje postulát II, je 
pojem vlastních čísel operátoru: platí-li pro nenulový vektor u  a nějaký operátor ÆA

ÆA u u= λ , (2.3)

1 Supervýběrová pravidla (superselection rules) se uplatňují v neseparabilních Hilbertových prostorech kvan-
tové teorie pole. Celý prostor je rozdělen na podprostory („sektory“) a superposice vektorů z různých sektorů 
je nepřípustná, princip superposice je tedy omezen. Známý příklad je zákaz superposice různých nábojových 
stavů (charge superselection rule). Také pozorovatelné působí výlučně uvnitř jednotlivých sektorů, maticové 
elementy mezi sektory jsou nulové a to právě vedlo k termínu ‚supervýběrové pravidlo‘ jako odkazu na oby-
čejná výběrová pravidla známá třeba z optiky.

 Více o supervýběrových pravidlech nalezne čtenář např. v přehledu z pera klasika tohoto problému: 
Wightman, A. S.: Superselection rules; old and new. Il Nuovo Cimento B 110 (1995), 751. Je však nutno 
upozornit na dynamicky indukovaná „měkká“ supervýběrová pravidla spojená s dekoherencí, viz Zurek, 
W. H: Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75 
(2003), 715.

 Konečně se supervýběrová pravidla uplatňují v moderní teorii kvantové informace, viz např. Bartlett, S. D. – 
Rudolph, T. – Spekkens, R. W.: Reference frames, superselection rules, and quantum information, Rev. Mod. 
Phys. 79 (2007), 555.
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říkáme, že u  je vlastní vektor operátoru ÆA a λ je k němu příslušející vlastní číslo. Operátor 
tak převádí vlastní vektor ve vektor „téhož směru“ lišící se eventuálně jen „délkou“. Jelikož 
(2.3) je homogenní rovnice, je zároveň s u  vlastním vektorem i každý vektor k u k, ≠ =0, 
lišící se od u  pouze délkou. Vzhledem k tomu budeme za různé vlastní vektory považovat 
jen ty, které jsou lineárně nezávislé.

* * * * *

Elementárním příkladem je jednotkový operátor, který budeme značit Æ1. Ten libovolný vek-
tor převádí v sebe sama (jinými slovy, každý vektor je jeho vlastním vektorem):

Æ1| =| |ψ ψ ψ〉 〉 = ⋅ 〉1  (2.4)

Jak naznačeno, má tedy jediné vlastní číslo, λ =1.1

º Tento operátor není bezvýznamnou hříčkou. Jednak by správně měl vystupovat 
na pravé straně kanonické komutační relace (2.2): [ Æ , Æ ] Æx p ii k i k= δ 1, jednak mu odpo-
vídá pozorovatelná, a sice jistota registrace. Proto se objevuje na pravé straně relací 
úpl nosti vlastních vektorů, která bude podrobně vysvětlena v § 3.2. »

Zatímco v konečně rozměrném vektorovém prostoru definuje rovnice (2.3) přímočaře řeši-
telnou úlohu, v nekonečné dimenzi vyžaduje problém vlastních vektorů a vlastních čísel 
hlubší analýzu a vede k nutnosti pracovat i s vektory, které vybočují z Hilbertova prostoru. 
K těmto formálním otázkám se nyní obrátíme.

1.3  MATEMATICKÉ PROSTŘEDKY KVANTOVÉ 
MECHANIKY

V tomto odstavci jsou soustředěny nejdůležitější definice a vlastnosti matematických objek-
tů, se kterými v kvantové teorii pracujeme. Klademe tu důraz méně na vyčerpávající exakt-
ní vý klad, více na užitečnost při vlastní práci. Také formální podoba všech veličin a rovnic 
je při způsobena stylu obvyklému ve fyzikálních textech.

1.3.1 HILBERTŮV PROSTOR2

Abstraktní Hilbertův prostor  je komplexní vektorový prostor na němž je definován ska-
lární součin. Jsou-li f g a  dva vektory z , budeme jejich skalární součin zna čit jako 

1 Jiným názorným příkladem je vlastní vektor operátoru rotace v E3. Rotace dle osy n o úhel α ≠ 0 převádí 
libovolný vektor z E3 ve vektor jiný s výjimkou vektorů ležících podél osy rotace, které nechává beze 
změny. Vektor n je tak vlastním vektorem operátoru rotace s vlastním číslem rovným jedné. Rotace a jejich 
reprezentace pomocí (unitárních) operátorů jsou předmětem kap. 5, § 4.

2 Podrobnější výklad vlastností vektorových prostorů a Hilbertova prostoru zvlášť je uveden v dodatku C.
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º Uvedená formulace obou postulátů je výrazně intutivní. Neklade si totiž otázku, 
které vektory Hilbertova prostoru jsou přípustné jako stavy, ani které hermitovské 
operátory odpovídají skutečně pozorovatelným veličinám. Z elementárních výkladů 
kvantové teorie často vzniká dojem, že přípustné vlnové funkce musejí být hladké 
s druhými derivacemi a že pozorovatelných majících význam je pár, zhruba: poloha, 
hybnost, moment hybnosti, kinetická a potenciální energie. S tím však nevystačí-
me. Pragmatická odpověď, implicitně stojící za oběma postuláty je, že přípustné 
vektory a operátory jsou všechny, které jsou potřebné. Skutečně konzistentní 
formulaci vyjadřuje Dvoudílný postulát úplnosti:

Postulát IBIS o stavovém vektoru: každý vektor Hilbertova prostoru popisuje pří-
pustný stav.
Postulát IIBIS o měřitelných veličinách: každý hermitovský operátor na Hil bertově 
prostoru popisuje nějakou pozorovatelnou.

Význam postulátu úplnosti pro kvantovou teorii z matematického hlediska je zřejmý, 
tento postulát má však také zásadní význam z hlediska operacionálního a tedy pro 
spojení s experimentem. Z Postulátu Ibis vyplývá princip superposice (Postulát I (b)) 
jako korolár. Zanedbáváme tedy možnost supervýběrových  pravidel1, která ovšem 
v ne relativistické oblasti fyziky atomů a jejich konglomerátů má mizivý význam. 
Po stulát IIbis může zarážet: operátor ÆÆ Æxp x-1  a podobné konstrukty nevypadají jako 
reálně po zorovatelné. Rozhodující zde však je, že tento postulát připouští jako pozo-
rovatelné projekční operátory (viz § 3.2. a dodatek C4), které mají jasný a dokon-
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v § 5. Z projekčních operátorů pak lze sestavit opravdu každý hermitovský (přesněji: 
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Klíčovým pojmem matematického aparátu kvantové teorie, jak ukazuje postulát II, je 
pojem vlastních čísel operátoru: platí-li pro nenulový vektor u  a nějaký operátor ÆA

ÆA u u= λ , (2.3)

1 Supervýběrová pravidla (superselection rules) se uplatňují v neseparabilních Hilbertových prostorech kvan-
tové teorie pole. Celý prostor je rozdělen na podprostory („sektory“) a superposice vektorů z různých sektorů 
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elementy mezi sektory jsou nulové a to právě vedlo k termínu ‚supervýběrové pravidlo‘ jako odkazu na oby-
čejná výběrová pravidla známá třeba z optiky.

 Více o supervýběrových pravidlech nalezne čtenář např. v přehledu z pera klasika tohoto problému: 
Wightman, A. S.: Superselection rules; old and new. Il Nuovo Cimento B 110 (1995), 751. Je však nutno 
upozornit na dynamicky indukovaná „měkká“ supervýběrová pravidla spojená s dekoherencí, viz Zurek, 
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f g . Z axiomů skalárního součinu uveďme např. relaci symetrie: g f f g= ∗, kde 
hvězdička označuje komplexní sdružení, dále pozitivnost: f f ≥ 0 (rovnost platí tehdy 
a jen tehdy, když f = 0) a antilinearitu v prvním argu mentu: cf g c f g= * , kde c je 
komplexní číslo. Skalární součin umožňuje zavést po jem ortogonality vektorů – říkáme, že 
ϕ  a ψ  jsou kolmé, když ϕ ψ = 0 – a po jem velikosti vektorů: říkáme, že ψ  je normo-
vaný (na jedničku), když ϕ ϕ ϕ= =1 čili ϕ ϕ =1.

Jednou z implementací Hilbertova prostoru je prostor L2(Ω) všech kvadraticky inte-
grovatelných komplexních funkcí reálné proměnné na oblasti Ω, v kontextu kvan tové teorie 
pak mluvíme o stavových vektorech v souřadnicové reprezentaci či o vlno vých funkcích. 
Jsou-li f x( ) a g x( ) dvě funkce z L2(Ω) , jejich skalární součin definu jeme jako

f g f x g x x= ∫ *( ) ( ) d
Ω

.  (3.1.1)

Při pevném f představuje skalární součin f g  lineární funkcionál, jenž kaž dému ketu g  
přiřazuje (komplexní) číslo f g . Tyto lineární funkcionály tvoří rov něž vekto rový prostor, 
jehož prvky budeme (opět dle Diraca), nazývat bra-vektory1 a zna čit f . Platí tudíž

f g f g( ) = .

Vektorový prostor, jehož elementy jsou bra-vektory, nazýváme duální k prostoru původ-
nímu. V Hilbertově prostoru je korespondence f f↔  jednoznačná a duální prostor je 
rovněž Hilbertův prostor. Kdybychom však vzali např. podprostor S ⊂ L2 tvořený funkce-
mi, které exponenciálně klesají v nekonečnu, bude duální prostor ′S  nejen větší než původ-
ní prostor S , ale i větší než Hilbertův prostor. Bude totiž obsahovat i funkce, které nejsou 
kvadraticky integrabilní (jako např. rovinnou vlnu), ale pro něž existuje skalární součin 
(3.1.1) s každou z funkcí z S . Právě v tomto smyslu vystupují v kvantové teorii i zobecněné 
funkce, jako je Diracova δ-funkce; podrobnější analýzu nalezne čtenář v dodatku B a C.

Všiměme si, že de Broglieho vlna, ψ( )x A ikx= e , která stála u zrodu kvantové teorie 
jako vlnová funkce popisující volnou částici, se nekvalifikuje jako přípustný „stavový 
vek tor“, neboť nepatří do L E2

1( ) – není totiž na intervalu E1 kvadraticky integrabilní. 
V prin cipu je možné omezit matematiku kvantové mechaniky na Hilbertův prostor, jako 
to učinil J. von Neumann2, ale čas dal za pravdu P. A. M. Diracovi, který formuloval 
kvantovou mecha niku3 za použití vlastních funkcí (ze spojitého spektra) vybočujících 
z Hilbertova prostoru; teorie distribucí a zavedení tzv. Gelfandova tripletu jako abstraktní 
nadstavby pak dodatečně poskytly matematické ospravedlnění jeho postupu. Podrobněji 
viz dodatek C.8.

1 Podle druhé části anglického výrazu pro závorku, bracket: bra c ket .
2 Neumann, J. von: Mathematische Grundlangen der Quantenmechanik. Berlin: Springer Verlag 1932.
3 Dirac, P. A. M.: The Principles of Quantum Mechanics. 4. vyd. Oxford University Press 1958.
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1.3.2 OPERÁTORY.1 VLASTNÍ VEKTORY A VLASTNÍ ČÍSLA.

Operátory vyskytující se v kvantové mechanice jsou lineární; jsou-li u u1 2,  libovolné vek-
tory z vektorového prostoru ℜ a c c1 2,  komplexní čísla, pak operátor ÆA je lineární, pokud platí:

Æ Æ ÆA c u c u c A u c A u1 1 2 2 1 1 2 2+( ) = + . (3.2.1)

Nadále budeme linearitu operátorů automaticky předpokládat.
Operátor ÆA† je hermitovsky sdružený k ÆA na prostoru ℜ, platí-li pro libovolné dva vek-

tory f , g  z ℜ vztah:

f Ag A f gÆ Æ= † . (3.2.2)

Platí-li Æ ÆA A† =  říkáme, že ÆA je hermitovský operátor.
Hermitovský operátor ÆP splňující podmínku Æ Æ ÆPP P=  se nazývá projekční. Je-li u  nor-

movaný vektor z ℜ, pak operátor

ÆP u uu =   (3.2.3)

je projekční operátor promítající do směru u , protože působí-li ÆPu na libovolný ket f , pak 
výsledný vektor míří „podél“ u :

ÆP f u u fu = .

Projekční operátory můžeme sčítat; je-li prostor ℜ N-rozměrný a normované vek tory ui , 

i=1,...,N, jsou vzájemně kolmé, pak operátor ÆPℜ definovaný vztahem ÆP u ui
i

N

iℜ
=

= ∑
1

pro-
mítá na celý prostor ℜ, takže

Æ ÆP u ui
i

N

iℜ
=

= =∑
1

1. (3.2.4)

Vztahu (3.2.4) říkáme rozklad jedničky a představuje podmínku úplnosti ortonormál ního 
souboru vektorů ui  v ℜ. Rozklad jedničky často používáme pro formální úpravy a Dira-
cova braketová notace je pro jeho použití obzvláště účelná. Např. můžeme psát:
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1

ÆÆ .A u uj j  (3.2.5)

1 Matematicky fundovanější výklad vlastností operátorů v Hilbertově prostoru je uveden v dodatku C a D. Tam 
jsou rovněž diskutovány problémy vznikající v nekonečné dimenzi a problém zobecněných vlastních funkcí 
operátorů.
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f g . Z axiomů skalárního součinu uveďme např. relaci symetrie: g f f g= ∗, kde 
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funkce, jako je Diracova δ-funkce; podrobnější analýzu nalezne čtenář v dodatku B a C.

Všiměme si, že de Broglieho vlna, ψ( )x A ikx= e , která stála u zrodu kvantové teorie 
jako vlnová funkce popisující volnou částici, se nekvalifikuje jako přípustný „stavový 
vek tor“, neboť nepatří do L E2

1( ) – není totiž na intervalu E1 kvadraticky integrabilní. 
V prin cipu je možné omezit matematiku kvantové mechaniky na Hilbertův prostor, jako 
to učinil J. von Neumann2, ale čas dal za pravdu P. A. M. Diracovi, který formuloval 
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operátorů.

kvantova mechanika 2025 import_pdf_znacky.indd   21kvantova mechanika 2025 import_pdf_znacky.indd   21 10.07.2025   14:01:3310.07.2025   14:01:33



– 22 –

Působení operátoru ÆA v ℜ je tudíž zcela popsáno maticí tohoto operátoru A u A uij i j= Æ  ve 
zvolené bázi ui{ }. Všimněme si, že platí

A u A u u A u Au u u Au Aij i j i j i j j i ji
† † †= = = = = ∗Æ Æ Æ Æ ,

*
 (3.2.6)

takže matice hermitovsky sdruženého operátoru ÆA† je rovna hermitovsky sdružené matici 
operátoru ÆA.

Veličiny, které nejsou přímo měřitelné, nemusí být reprezentovány hermitovskými ope-
rátory (viz níže). Operace rotace či posunutí v prostoru E3 jsou v prostoru ketů reprezen-
továny operátory, které nejsou hermitovské, ale unitární. Operátor ÆU je uni tární, platí-li:

Æ Æ Æ Æ ÆUU U U† †= =1. (3.2.7)

(V nekonečně rozměrných prostorech jsou obě relace (3.2.7) podstatné.) Zvolíme-li v ℜ 
libo volnou ortonormální bázi ui , i = 1,…,N, má definice (3.2.7) podobu definice unitární 
matice

U U U Uki i
i

N

ik i
i

N

k  

∗

=

∗

=
∑ ∑= =

1 1
δ . (3.2.8)

Jelikož z definic (3.2.2) a (3.2.7) plyne pro libovolné dva kety f , g  

Æ Æ Æ ÆUf Ug f U Ug f g= =† , (3.2.9)

zachovávají unitární operátory „úhly“ mezi vektory1 a jejich velikost, takže převádějí jednu 
ortonormální bázi ui , i = 1,...,N, v druhou ortonormální bázi w i Ni , ,...,=1 :

w U u i Ni i= =Æ , ,...,1 . (3.2.10)

Je-li operátor ÆA popsán v původní bázi maticí Aij (viz definici (3.2.5))

ÆA u A uji
j

N

i j=
=

∑
1

,

pak v nové bázi wi{ } je jeho působení popsáno maticí ′Ai j definovanou vztahem

ÆA w A wji
j

N

i j= ′
=

∑
1

, (3.2.11)

což můžeme přepsat ve tvaru

1 Úhel mezi vektory v N-rozměrném prostoru můžeme zavést zobecněním vztahu z třírozměrného prostoru:
cos /α = uv u v .
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Æ Æ ÆU AU u A uji
j

N
†

i j= ′
=

∑
1

 (3.2.12)

Matice ′A  a A  spojené vztahem

′ =A U A U†  (3.2.13)

se nazývají unitárně ekvivalentní a totéž platí i pro operátory Æ ÆA A a ′ spojenými vztahy

Æ Æ Æ Æ′ =A U AU† . (3.2.14)

Unitárně ekvivalentní matice a operátory mají mnoho společného, neboť popisují totéž line-
ární zobrazení jen v jiné bázi. Mají kupříkladu stejné spektrum (i když jiné vlastní vektory) 
a splňují tytéž komutační relace.

Předpis (3.2.14) popisuje transformaci operátorů při změně báze. Alternativně mů žeme 
provést unitární transformaci ketů v téže bázi předpisem

ψ ψ ϕ ϕ' Æ , ' Æ ,...= =U U . (3.2.15)

Odpovídající transformaci operátorů pak definujme požadavkem:

Æ Æ ' ' 'A Aψ ϕ ψ ϕ= ⇔ = . (3.2.16)

V tomto případě snadno nalezneme, že

Æ ' Æ Æ ÆA UAU= †. (3.2.17)

Také tato dvojice operátorů Æ Æ 'A A a  je unitárně ekvivalentní. Prvou transformaci nazýváme 
pasivní, druhou aktivní. V E3 by první odpovídala vyjádření vektorů a lineárních zobrazení 
v pootočeném souřadném systému, druhá vyjádření pootočených vektorů a lineárních zob-
razení v pevné bázi. S oběma případy se v dalším setkáme.

* * * * *

Je-li operátor ÆF definován na prostoru ℜ, pak nenulový vektor f ∈ ℜ splňující relaci

ÆF f f= λ , (3.2.18)

se nazývá (jak jsme již dříve uvedli) vlastní vektor operátoru ÆF a λ je odpovídající vlastní 
číslo. Je-li ÆF  v (3.2.18) hermitovský operátor, platí řada významných vlastností (jejichž 
důkaz je uveden v dodatcích C a D):

(a) vlastní čísla jsou reálná,
(b) vlastní vektory lze vždy volit ortogonální a jelikož jejich velikost je libovolná, tak 

i ortonormální. Budeme dále vždy předpokládat, že vlastní vektory hermi tovských 
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razení v pevné bázi. S oběma případy se v dalším setkáme.

* * * * *

Je-li operátor ÆF definován na prostoru ℜ, pak nenulový vektor f ∈ ℜ splňující relaci

ÆF f f= λ , (3.2.18)

se nazývá (jak jsme již dříve uvedli) vlastní vektor operátoru ÆF a λ je odpovídající vlastní 
číslo. Je-li ÆF  v (3.2.18) hermitovský operátor, platí řada významných vlastností (jejichž 
důkaz je uveden v dodatcích C a D):

(a) vlastní čísla jsou reálná,
(b) vlastní vektory lze vždy volit ortogonální a jelikož jejich velikost je libovolná, tak 

i ortonormální. Budeme dále vždy předpokládat, že vlastní vektory hermi tovských 
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operátorů reprezentující pozorovatelné veličiny tvoří bázi v prostoru, v němž je 
hermitovský operátor definován, a

(c) je-li ÆG rovněž hermitovský operátor, pak společný systém vlastních vektorů Æ ÆF Ga  
existuje tehdy a jen tehdy, když ÆF a ÆG komutují.

Jelikož vlastní čísla odpovídají dle postulátu II (b) měřeným hodnotám fyzikálních veli čin, 
musí být reálná, čímž je objasněno, proč pozorovatelné veličiny musí být repre zentovány 
hermitovskými operátory.

Všiměme si, že matice hermitovského operátoru v ortonormální bázi svých vlast ních 
vektorů je diagonální:

Æ Æ ,
, ,

F F F F F F F F F F F Fk
k

k k k
k

k k
k

k= = =∑ ∑ ∑


   





δ  (3.2.19)

což můžeme přepsat pomocí projekčních operátorů jako

Æ Æ , Æ .F F P P F Fk k
k

k k k= =∑  (3.2.20)

Existuje-li k vlastnímu číslu Fk  pouze jediný vlastní vektor Fk , říkáme, že číslo Fk  je 
nedegenerované. Existuje-li naopak takových (lineárně nezávislých) vektorů více, 
F i sk i k, ,...,=1 , pak i každý vektor

ψ =
=
∑c Fi k i
i

sk

1
, (3.2.21)

kde c i si k, ,...,=1  jsou libovolné koeficienty, je vlastním vektorem ÆF s vlastním číslem Fk . 
Tvoří-li tyto vektory Fki  ortonormální systém, pak unitární transformace U pře vádí původ-
ní systém vlastních vektorů F j sk j k, ,...,=1  v rovnocenný ortonormální sys tém vlastních 
vektorů F j sk j k, ,...,=1 :

F U F j sk j ji
i

s

ki k

k

= =
=
∑

1
1, ,..., .  (3.2.22)

Poznamenejme, že vzhledem k potenciální degeneraci vlastních čísel, je obzvláště vý hodný 
zápis (3.2.20) hermitovského operátoru ÆF v bázi svých vlastních vektorů, pro tože projekční 
operátory ÆPk pak promítají na celý podprostor vlastních stavů přísluš ných (degenerované-
mu) vlastnímu číslu Fk  a zápis je invariantní vzhledem k transformacím (3.2.22).

* * * * *

Zatímco stavové vektory musí být vektory z Hilbertova prostoru, Hilbertův prostor je příliš 
malý, aby v něm úloha na vlastní vektory některých fundamentálních operátorů kvantové 
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mechaniky měla řešení. Jak snadno nalezneme, mají v souřadnicové reprezentaci vlastní 
funkce Æx s vlastním číslem x0 a vlastní funkce Æp s vlastním čís lem p0 tvar:

f x x x f xx p
ip x

0 0

0
0

1
2

( ) ( ), ( ) /= − =δ
π

e , (3.2.23)

přičemž první není funkcí v běžném slova smyslu a druhá není kvadraticky integrabilní (ale 
z hlediska Hilbertova prostoru jsou obě stejně „singulární“, protože při vhodné změně báze 
v Hilbertově prostoru si prohodí místa). Oba operátory mají také spojité spektrum.

Zatímco vlastní vektory patřící k diskrétnímu spektru leží v Hilbertově prostoru, vlastní 
vektory spojitého spektra nikoliv; vlastní vektory diskrétního spektra lze tudíž normovat 
obvyklým způsobem, zatímco vlastní vektory odpovídající spojitému spektru lze normovat 
pouze na δ-funkci

f fλ λ δ λ λ' ( ')= − . (3.2.24)

Nechceme-li proto vyřadit z používaného matematického aparátu zobecněné funkce, jako 
jsou δ-funkce a rovinné vlny, musíme jako vlastní vektory (funkce) připustit i funkce nepa-
třící do L E2

1( ). Jak uvidíme dále, při výpočtu měřitelných veličin se zobecněné vlastní 
funkce vyskytují v kvantověmechanickém formalismu fakticky pouze ve „skalárních souči-
nech“ s vlnovými funkcemi z L2. Můžeme proto zmírnit požadavek na přípustnost vlastních 
funkcí např. tak, že připustíme v definici (3.2.18) všechna fλ, pro něž

f x L Eλ ψ λ λ*( ) ( ) ( )
−∞

+∞

∫ ∈d 2
1  (3.2.25)

pro každé ψ∈ L E2
1( ). Na takové vlastní funkce pak rozšíříme i definici skalárního součinu. 

V tomto smyslu jsou pak přípustné i dříve nalezené vlastní funkce operátorů Æx a Æp. V pří-
padě první z funkcí (3.2.23) se integrál (3.2.25) redukuje přímo na zvolenou funkci ψ( )x , 
v případě druhé z funkcí (3.2.23) je integrál (3.2.25) roven Fourierovu obrazu funkce ψ( )x , 
který patří do L E2

1( ), jak se dokazuje v teorii Fourierova integrálu.

1.4  ABSTRAKTNÍ HILBERTŮV PROSTOR A HILBERTŮV 
PROSTOR KONKRÉTNÍHO SYSTÉMU

Dříve než přikročíme k dalším postulátům kvantové teorie, bude účelné alespoň předběž-
ně stanovit, jak se vektory a operátory příslušné zcela abstraktně chápanému Hilbertovu 
prostoru vztahují k reálným fyzikálním systémům. K dané dimenzi, ať již konečné, nebo 
spočetně ne konečné1, přísluší jediný abstraktní unitární či Hilbertův prostor, „stejný“ pro 

1 Mechanickým systémům nerelativistické teorie s konečným počtem stupňů volnosti odpovídá v kvantovém 
popisu Hilbertův prostor se spočetně nekonečnou dimenzí (tj. lze v něm zavést ortonormovanou bázi, jejíž 
vektory mohou být očíslovány). Naproti tomu v kvantové teorii pole pracujeme s prostory o nespočetně 
nekonečné dimenzi. To se týká již problémů zdánlivě nenápadných, jako je záření černého tělesa, z kterého 
se vlastně pojem kvanta zrodil.
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všechny sys témy. Přiřadit prostor stavů k zvolenému systému znamená dát Hilbertovu pro-
storu určitou vnitřní strukturu, například zavedením vhodné ortonormované báze. Mluví se 
o sestrojení Hilbertova prostoru. Jsou tu dvě možné cesty:

(a) V případech, kdy jsme vedeni názorem, můžeme za výchozí vzít Postulát I a sta-
vové vektory zavést prostřednictvím jejich zobrazení (vzájemně jednoznačného) do 
prostoru L2(Ω) funkcí na konfiguračním prostoru Ω, který jsme předem intui tivně 
vyvolili. To je např. případ jedné částice popsaný rovnicemi (2.1).

(b) Obecnějším a zároveň fyzikálnějším postupem je vyjít z Postulátu II a zvolit 
základní pozorovatelné pro daný systém a jejich charakteristické určující vlastnosti. 
V daném případě to znamená vyjít z komutačních relací (2.2) a z nich zpětně k (2.1) 
dojít – příklad takzvaného kanonického kvantování.

Zajisté by bylo vítané, kdyby pro sestrojení prostoru stavů k danému systému existova-
lo uni verzální pravidlo, podle kterého by bylo možno postupovat a které by vystupova-
lo v celém schématu kvantové teorie jako další postulát. To však není v úplnosti možné 
a vlastně po každé je nutno postup „kvantování“ podrobně posoudit. Je však několik obec-
ných vodítek, která ve většině případů postačí:

1. Pro systémy s klasickou analogií, tedy takové, jejichž pozorovatelné mají význam 
i v mezním případě zanedbání kvantových efektů, je kanonické kvantování podrob-
ně diskutováno v následujícím odstavci.

2. K nejdůležitějším pozorovatelným, jako je hybnost nebo moment hybnosti je možno 
dospět také zkoumáním důsledků symetrie Eukleidova prostoru, jako je jeho homo-
genita a izotropie. To je diskutováno v kap. 5.

3. Má-li systém anebo jeho části dodatečné, čistě kvantové stupně volnosti, je nutno 
pro jejich popis vybudovat odpovídající prostor stavů, zpravidla o konečné di menzi. 
Příkladem tu je zavedení spinu elektronu v nerelativistické teorii; jeho existence je 
zde nezávislým postulátem a pro jeho popis je zaveden spinový prostor dimenze 2. 
Tomu je věnována kap. 6.

4. Pro složený systém, tvořený několika podsystémy, je možno prostor stavů vybudo vat 
jako direktní součin prostorů stavů těchto podsystémů, viz § 4.4.

Je nutno upozornit na odlišnost prvních tří bodů od posledního. Body 1.–3. mají heuris-
tický ráz, poskytují nám vodítko, nikoli jednoznačně platné výsledky. Bod 4. je součástí 
forma lismu a má exaktní deduktivní charakter. Zvláštní postavení má bod 1. Konstrukce 
Hilbertova prostoru má v tomto případě skutečně ráz kvantování, tedy postupu, který his-
toricky sehrál jedinečnou úlohu: umožnil odrazit se od pevniny klasické fyziky a na bárce 
kvantování se vydat na neznámý oceán kvantového světa. Svůj význam sehrává i dnes. 
Vztah obou světů, kvantového a klasického zůstává jedním z klíčových témat kvantové 
teorie. Zbytek § 4 je vě nován prvnímu z uvedených aspektů této problematiky, možnostem 
kanonického kvantování.
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1.4.1 SYSTÉMY S KLASICKOU ANALOGIÍ: KARTÉZSKÉ SOUŘADNICE

Začneme od kanonického kvantování v případě, kdy je tento postup zaručen, totiž od zobec-
nění rovnic (2.2) na případ mnoha částic:

* * * * *

Postulát III: O kanonickém kvantování kartézských proměnných
Jsou-li xi, pi, i = 1,…, N kartézské kanonicky sdružené proměnné1, pak jejich operátory 
splňují komutační relace

Æ , Æ , Æ , Æ Æ , Æ ; , ,...,x p i x x p p i j Ni j ij i j i j  =   =   = =δ 0 1 . (4.1.1)

* * * * *

Naším cílem bude z tohoto postulátu odvodit vlastnosti těchto pozorovatelných a dalších 
veličin z nich sestrojených jako jejich funkce. Označme

x x x p p pN N= =1 1,..., , ,...,  (4.1.2)

a obecněji pro libovolné zobecněné souřadnice

q q q p p pN N= =1 1,..., , ,..., . (4.1.3)

Podobně pro operátory

Æ Æ ,..., Æ , Æ Æ ,..., Æ ,
Æ Æ ,..., Æ , Æ Æ ,..., Æ
x x x p p p
q q q p p p

N N

N

= =
= =

1 1

1 1 NN . (4.1.4)

Z platnosti komutačních relací (4.1.1) plyne úplnou indukcí, že alespoň pro každou funkci 
F x( ) resp. F p( ), již lze rozvést v mocninnou řadu, platí pro každé s N=1,..., :

[ Æ , Æ ( Æ )]
Æ

Æ ( Æ ), [ Æ , Æ ( Æ)]
Æ

Æ ( Æ)x F p i
p

F p p F x i
x

F xs
s

s
s

=
∂

∂
= −

∂
∂

  , (4.1.5)

kde parciální derivace vpravo provedeme formálně v rozvoji funkce do mocninné řady.2

1 Jsou-li q q i Ni i, , ,..., = 1  zobecněné souřadnice a rychlosti, pak hybnosti pi kanonicky sdružené se souřadni-

cemi qi jsou definovány vztahem p L
qi

i
=

∂
∂ 

, kde L je Lagrangeova funkce, jež je pro konzervativní síly dána 

jako rozdíl kinetické a potenciální energie, L T V= − . Hamiltonova funkce, klíčová veličina kanonického 

formalismu, je dána jako H p q Li i
i

N
= −

=
∑ 

1
 a nezávisí-li Lagrangeova funkce na čase, je rovna celkové energii, 

H T V= + .
2 Pro konstanty a lineární funkce tvrzení triviálně platí. Libovolný polynom pak vytváříme lineární kombinací 

součinů. Pro komutátor součtu a součinu však platí stejná algebraická pravidla jako pro derivace.
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všechny sys témy. Přiřadit prostor stavů k zvolenému systému znamená dát Hilbertovu pro-
storu určitou vnitřní strukturu, například zavedením vhodné ortonormované báze. Mluví se 
o sestrojení Hilbertova prostoru. Jsou tu dvě možné cesty:

(a) V případech, kdy jsme vedeni názorem, můžeme za výchozí vzít Postulát I a sta-
vové vektory zavést prostřednictvím jejich zobrazení (vzájemně jednoznačného) do 
prostoru L2(Ω) funkcí na konfiguračním prostoru Ω, který jsme předem intui tivně 
vyvolili. To je např. případ jedné částice popsaný rovnicemi (2.1).

(b) Obecnějším a zároveň fyzikálnějším postupem je vyjít z Postulátu II a zvolit 
základní pozorovatelné pro daný systém a jejich charakteristické určující vlastnosti. 
V daném případě to znamená vyjít z komutačních relací (2.2) a z nich zpětně k (2.1) 
dojít – příklad takzvaného kanonického kvantování.

Zajisté by bylo vítané, kdyby pro sestrojení prostoru stavů k danému systému existova-
lo uni verzální pravidlo, podle kterého by bylo možno postupovat a které by vystupova-
lo v celém schématu kvantové teorie jako další postulát. To však není v úplnosti možné 
a vlastně po každé je nutno postup „kvantování“ podrobně posoudit. Je však několik obec-
ných vodítek, která ve většině případů postačí:

1. Pro systémy s klasickou analogií, tedy takové, jejichž pozorovatelné mají význam 
i v mezním případě zanedbání kvantových efektů, je kanonické kvantování podrob-
ně diskutováno v následujícím odstavci.

2. K nejdůležitějším pozorovatelným, jako je hybnost nebo moment hybnosti je možno 
dospět také zkoumáním důsledků symetrie Eukleidova prostoru, jako je jeho homo-
genita a izotropie. To je diskutováno v kap. 5.

3. Má-li systém anebo jeho části dodatečné, čistě kvantové stupně volnosti, je nutno 
pro jejich popis vybudovat odpovídající prostor stavů, zpravidla o konečné di menzi. 
Příkladem tu je zavedení spinu elektronu v nerelativistické teorii; jeho existence je 
zde nezávislým postulátem a pro jeho popis je zaveden spinový prostor dimenze 2. 
Tomu je věnována kap. 6.

4. Pro složený systém, tvořený několika podsystémy, je možno prostor stavů vybudo vat 
jako direktní součin prostorů stavů těchto podsystémů, viz § 4.4.

Je nutno upozornit na odlišnost prvních tří bodů od posledního. Body 1.–3. mají heuris-
tický ráz, poskytují nám vodítko, nikoli jednoznačně platné výsledky. Bod 4. je součástí 
forma lismu a má exaktní deduktivní charakter. Zvláštní postavení má bod 1. Konstrukce 
Hilbertova prostoru má v tomto případě skutečně ráz kvantování, tedy postupu, který his-
toricky sehrál jedinečnou úlohu: umožnil odrazit se od pevniny klasické fyziky a na bárce 
kvantování se vydat na neznámý oceán kvantového světa. Svůj význam sehrává i dnes. 
Vztah obou světů, kvantového a klasického zůstává jedním z klíčových témat kvantové 
teorie. Zbytek § 4 je vě nován prvnímu z uvedených aspektů této problematiky, možnostem 
kanonického kvantování.
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1.4.1 SYSTÉMY S KLASICKOU ANALOGIÍ: KARTÉZSKÉ SOUŘADNICE

Začneme od kanonického kvantování v případě, kdy je tento postup zaručen, totiž od zobec-
nění rovnic (2.2) na případ mnoha částic:

* * * * *

Postulát III: O kanonickém kvantování kartézských proměnných
Jsou-li xi, pi, i = 1,…, N kartézské kanonicky sdružené proměnné1, pak jejich operátory 
splňují komutační relace

Æ , Æ , Æ , Æ Æ , Æ ; , ,...,x p i x x p p i j Ni j ij i j i j  =   =   = =δ 0 1 . (4.1.1)

* * * * *

Naším cílem bude z tohoto postulátu odvodit vlastnosti těchto pozorovatelných a dalších 
veličin z nich sestrojených jako jejich funkce. Označme

x x x p p pN N= =1 1,..., , ,...,  (4.1.2)

a obecněji pro libovolné zobecněné souřadnice

q q q p p pN N= =1 1,..., , ,..., . (4.1.3)

Podobně pro operátory

Æ Æ ,..., Æ , Æ Æ ,..., Æ ,
Æ Æ ,..., Æ , Æ Æ ,..., Æ
x x x p p p
q q q p p p

N N

N

= =
= =

1 1

1 1 NN . (4.1.4)

Z platnosti komutačních relací (4.1.1) plyne úplnou indukcí, že alespoň pro každou funkci 
F x( ) resp. F p( ), již lze rozvést v mocninnou řadu, platí pro každé s N=1,..., :

[ Æ , Æ ( Æ )]
Æ

Æ ( Æ ), [ Æ , Æ ( Æ)]
Æ

Æ ( Æ)x F p i
p

F p p F x i
x

F xs
s

s
s

=
∂

∂
= −

∂
∂

  , (4.1.5)

kde parciální derivace vpravo provedeme formálně v rozvoji funkce do mocninné řady.2

1 Jsou-li q q i Ni i, , ,..., = 1  zobecněné souřadnice a rychlosti, pak hybnosti pi kanonicky sdružené se souřadni-

cemi qi jsou definovány vztahem p L
qi

i
=

∂
∂ 

, kde L je Lagrangeova funkce, jež je pro konzervativní síly dána 

jako rozdíl kinetické a potenciální energie, L T V= − . Hamiltonova funkce, klíčová veličina kanonického 

formalismu, je dána jako H p q Li i
i

N
= −

=
∑ 

1
 a nezávisí-li Lagrangeova funkce na čase, je rovna celkové energii, 

H T V= + .
2 Pro konstanty a lineární funkce tvrzení triviálně platí. Libovolný polynom pak vytváříme lineární kombinací 

součinů. Pro komutátor součtu a součinu však platí stejná algebraická pravidla jako pro derivace.
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Mějme nyní společný vlastní vektor všech (komutujících) operátorů souřadnice

Æ , ,...,x a i Ni iΦ Φ= =1 , (4.1.6)

kde ai  jsou nějaká reálná čísla. Zvolme dále N-tici reálných čísel { }bi  a pomocí unitární 
trans formace definujme vektor

{ } e Æ ( Æ ) .( ) Æ ( )b F pi p b aj j j
�

�= =
− ∑ −1

Φ Φ  (4.1.7)

S pomocí (4.1.5) dostáváme

Æ { } Æ ( Æ )
Æ

Æ ( Æ )

{ } .

x b F p a i
p

F p

b b

i i
i

i

�

�

�= +
∂

∂

=

Φ Φ

  (4.1.8)

Protože čísla bi jsou libovolná, znamená to, že operátory souřadnice mají neohraničené spo-
jité spektrum vyplňující interval ( , )−∞ +∞ . Totéž pochopitelně platí o operátorech hybnosti.

Zatímco původní stav (4.1.6) popisuje částice v místech a i Ni , ,...,=1 , vektor 
b b bN

{ } ≡ 1,...,  v (4.1.8) popisuje částice v místech b i Ni , ,...,=1 . Operátor

Æ ( Æ ) e( ) Æ ( )F p i p b ai i i=
− ∑ −

1

tak popisuje posunutí v konfiguračním prostoru o vektor b a b a b aN N− = − −( ,..., )1 1 .1

º Tento výsledek závisí jen na komutačních relacích (2.2) resp. (4.1.1) (ty je nut-
no pou žít k odvození (4.1.5)) a bývá označován jako Pauliho věta: jestliže dvojice 
samo sdružených operátorů Æ, ÆP Q splňuje vztah [ Æ, Æ ]P Q i= , pak oba operátory mají 
spojité spektrum vyplňující celou přímku. »

Lineární obal vektorů { }x


, tj. normovatelných lineárních kombinací a jejich hromadných 
bodů je izomorfní s L EN

2 ( ), kde N-rozměrný Eukleidův prostor vzniká jako kartézský sou-
čin N intervalů ( , )−∞ +∞ :

Ψ Ψ Ψ= ⇔ ≡∏∫ d { } { } ( ) { }xi x x x x
  

ψ . (4.1.9)

Vidíme, že konfigurační prostor nemusíme předpokládat, vzniká přirozeným způsobem 
jako obor měřitelných hodnot kartézských souřadnic.

Působení operátorů hybnosti Æpi na lineárním obalu vektorů { }x


 najdeme využitím 
vztahů (4.1.9) a (4.1.7):

1 S operátorem posunutí se znova setkáme v kap. 5 při diskusi homogenity prostoru a roli symetrie v kvantové 
mechanice obecně.
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lim ( , , , , ) ( , , , , )]

lim { } e

[

[
ε

ε

ε

ε

ψ ε ψ
→

→

+ −

=

0
1 1

0

1

1

x x x x x x

x

r N r N� � � �

�
−− −

−( ) Æ { } ]i pr x�
�

1 ε Ψ Ψ  (4.1.10)

a tedy

−
∂

∂
=i

x
x x p

r
r� �ψ( ) { } Æ Ψ , (4.1.11)

který standardně zapisujeme jako

Æ Æ ( )p x p xr r

{ } ≡Ψ ψ .

V případě kartézských proměnných se tedy podařilo splnit kanonické komutační relace 
oče kávaným způsobem,

Æ , Æ , ,...,x x p i
x

i Ni i i
i

= = −
∂

∂
= 1 . (4.1.12)

º Bylo dokázáno (věta Stoneova-von Neumannova), že všechny ireducibilní 
reprezen tace kanonických komutačních relací (4.1.1) jsou unitárně ekvivalentní 
s (4.1.12). Důle žité jsou například unitární transformace, které nemění operátory 
souřadnic. Ty jsou tvaru Æ e ( Æ )U i x= − Φ

 , kde F( )xi  je reálná funkce. Dostáváme

Æ Æ Æ e Æ e Æ
Æ Æ Æ e Æ e

( Æ ) ( Æ )

( Æ ) (

U xU x x

U pU p
i

i x
i

i x
i

i
i x

i
i

†

†

= =

=

−

−

Φ Φ

Φ Φ

� �

� ÆÆ ) Æ ( Æ ).x
i ip x� � �= − ∂ Φ  (4.1.13)

Je poučné ověřit, že transformované hybnosti navzájem komutují. Tato transformace 
je příkladem tzv. kalibrační transformace, která je lokální a spočívá vlastně v přefá-
zovaní vektorů báze: Æ { } e { }( )U x xi x

 

= − Φ , viz kap. 13, § 2.1. »

Další pozorovatelné budou popsány operátory, které rovněž vyvodíme z klasické analo-
gie, ovšem s uvážením nekomutativnosti základních operátorů. Uvažujeme systém n částic 
a pro souřadnice a hybnosti použijeme vektorové podoby. Tedy Æ Æ Æ Ær e e eJ J J Jx x x= + +1 1 2 2 3 3, 
kde ei i, , ,=1 2 3 jsou jednotkové vektory ve směru souřadných os, podobně ÆpJ . Zpět k inde-
xování (4.1.4) vede předpis Ju i J n→ =, , , ;1   u =1 2 3, , ;. i N n= =1 3, , .  Nejdůležitěj-
šími příklady, kdy nevznikají těžkosti jsou:

Æ ( ) ÆR r= ∑ ∑−

J
J

J
J Jm m1 Polohový vektor těžiště

Æ ÆP p= ∑
J

J Celková hybnost soustavy

Æ Æ ÆL r p= ∑ ×
J

J J Celkový moment hybnosti
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Mějme nyní společný vlastní vektor všech (komutujících) operátorů souřadnice

Æ , ,...,x a i Ni iΦ Φ= =1 , (4.1.6)

kde ai  jsou nějaká reálná čísla. Zvolme dále N-tici reálných čísel { }bi  a pomocí unitární 
trans formace definujme vektor

{ } e Æ ( Æ ) .( ) Æ ( )b F pi p b aj j j
�

�= =
− ∑ −1

Φ Φ  (4.1.7)

S pomocí (4.1.5) dostáváme

Æ { } Æ ( Æ )
Æ

Æ ( Æ )

{ } .

x b F p a i
p

F p

b b

i i
i

i

�

�

�= +
∂

∂

=

Φ Φ

  (4.1.8)

Protože čísla bi jsou libovolná, znamená to, že operátory souřadnice mají neohraničené spo-
jité spektrum vyplňující interval ( , )−∞ +∞ . Totéž pochopitelně platí o operátorech hybnosti.

Zatímco původní stav (4.1.6) popisuje částice v místech a i Ni , ,...,=1 , vektor 
b b bN

{ } ≡ 1,...,  v (4.1.8) popisuje částice v místech b i Ni , ,...,=1 . Operátor

Æ ( Æ ) e( ) Æ ( )F p i p b ai i i=
− ∑ −

1

tak popisuje posunutí v konfiguračním prostoru o vektor b a b a b aN N− = − −( ,..., )1 1 .1

º Tento výsledek závisí jen na komutačních relacích (2.2) resp. (4.1.1) (ty je nut-
no pou žít k odvození (4.1.5)) a bývá označován jako Pauliho věta: jestliže dvojice 
samo sdružených operátorů Æ, ÆP Q splňuje vztah [ Æ, Æ ]P Q i= , pak oba operátory mají 
spojité spektrum vyplňující celou přímku. »

Lineární obal vektorů { }x


, tj. normovatelných lineárních kombinací a jejich hromadných 
bodů je izomorfní s L EN

2 ( ), kde N-rozměrný Eukleidův prostor vzniká jako kartézský sou-
čin N intervalů ( , )−∞ +∞ :

Ψ Ψ Ψ= ⇔ ≡∏∫ d { } { } ( ) { }xi x x x x
  

ψ . (4.1.9)

Vidíme, že konfigurační prostor nemusíme předpokládat, vzniká přirozeným způsobem 
jako obor měřitelných hodnot kartézských souřadnic.

Působení operátorů hybnosti Æpi na lineárním obalu vektorů { }x


 najdeme využitím 
vztahů (4.1.9) a (4.1.7):

1 S operátorem posunutí se znova setkáme v kap. 5 při diskusi homogenity prostoru a roli symetrie v kvantové 
mechanice obecně.
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lim ( , , , , ) ( , , , , )]

lim { } e

[

[
ε

ε

ε

ε

ψ ε ψ
→

→

+ −

=

0
1 1

0

1

1

x x x x x x

x

r N r N� � � �

�
−− −

−( ) Æ { } ]i pr x�
�

1 ε Ψ Ψ  (4.1.10)

a tedy

−
∂

∂
=i

x
x x p

r
r� �ψ( ) { } Æ Ψ , (4.1.11)

který standardně zapisujeme jako

Æ Æ ( )p x p xr r

{ } ≡Ψ ψ .

V případě kartézských proměnných se tedy podařilo splnit kanonické komutační relace 
oče kávaným způsobem,

Æ , Æ , ,...,x x p i
x

i Ni i i
i

= = −
∂

∂
= 1 . (4.1.12)

º Bylo dokázáno (věta Stoneova-von Neumannova), že všechny ireducibilní 
reprezen tace kanonických komutačních relací (4.1.1) jsou unitárně ekvivalentní 
s (4.1.12). Důle žité jsou například unitární transformace, které nemění operátory 
souřadnic. Ty jsou tvaru Æ e ( Æ )U i x= − Φ

 , kde F( )xi  je reálná funkce. Dostáváme
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Φ Φ

Φ Φ
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� ÆÆ ) Æ ( Æ ).x
i ip x� � �= − ∂ Φ  (4.1.13)

Je poučné ověřit, že transformované hybnosti navzájem komutují. Tato transformace 
je příkladem tzv. kalibrační transformace, která je lokální a spočívá vlastně v přefá-
zovaní vektorů báze: Æ { } e { }( )U x xi x

 

= − Φ , viz kap. 13, § 2.1. »

Další pozorovatelné budou popsány operátory, které rovněž vyvodíme z klasické analo-
gie, ovšem s uvážením nekomutativnosti základních operátorů. Uvažujeme systém n částic 
a pro souřadnice a hybnosti použijeme vektorové podoby. Tedy Æ Æ Æ Ær e e eJ J J Jx x x= + +1 1 2 2 3 3, 
kde ei i, , ,=1 2 3 jsou jednotkové vektory ve směru souřadných os, podobně ÆpJ . Zpět k inde-
xování (4.1.4) vede předpis Ju i J n→ =, , , ;1   u =1 2 3, , ;. i N n= =1 3, , .  Nejdůležitěj-
šími příklady, kdy nevznikají těžkosti jsou:

Æ ( ) ÆR r= ∑ ∑−

J
J

J
J Jm m1 Polohový vektor těžiště

Æ ÆP p= ∑
J

J Celková hybnost soustavy

Æ Æ ÆL r p= ∑ ×
J

J J Celkový moment hybnosti
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Æ ( ) ÆT m
J

J J= ∑ −2 1 2p Celková kinetická energie

Æ ( Æ ) ( Æ , Æ )( ) ( )V V V
J

J J
JK

JK J K= ∑ + ∑ +1 2r r r 

Potenciální energie daná vnějšími poli, párovými 
interakcemi atd.

Æ Æ ÆH T V= +
Hamiltonián pro konzervativní systém rovný 
celkové energii 

Tvar uvedených veličin je shodný s klasickými výrazy, protože v součinech vystupují jen 
komutující operátory (i u momentu hybnosti se ve vektorovém sou činu násobí nestejné 
souřadnice a hybnosti).

Tam, kde kanonicky sdružené veličiny vystupují v součinu, je přechod od klasických 
výrazů k odpovídajícím kvantovým pozorovatelným nesnadný. Uvažujme jediný pár kano-
nických proměnných x a p, ÆÆ Æ Æ .xp px i− =   Co přiřadíme klasické veličině xp? V nejjedno-
dušších případech provedeme „symetrizaci“, aby vznikla kvantová pozorovatelná, tedy 
samosdružený („hermitovský“) operátor:

  xp xp px→ +
1
2

( ÆÆ Æ Æ) (4.1.14)

To je ovšem heuristický krok a jeho oprávněnost můžeme posoudit až dodatečně.
Příklad operátoru 1

2 ÆÆ Æ Æxp px+{ } vypadá poněkud uměle, ale ve skutečnosti se vyskytuje 
dosti často. Například unitární operátor změny měřítka působící na vlnovou funkci podle 
vztahu

Æ ( ) ( ) ( ),U x xλ ψ λ ψ λ λ= >
1
2 0

má operátorovou podobu

Æ ( ) e
ÆÆ Æ Æ ln

U
i xp px

λ
λ

=
+{ }



1
2 . (4.1.15)

Chápeme-li Æ, Æx p podle konvence (4.1.4), platí tento vztah beze změny i ve vícerozměrném 
případě. K tomu se ještě vrátíme v § 9.6 při odvozování věty o viriálu.

Známějším příkladem tohoto symetrizačního postupu je konstrukce operátoru radi ální 
složky hybnosti, jež je v klasické teorii kanonicky sdružená k velikosti průvodiče r = | |r ; 
zabýval se jí již Dirac v prvním vydání své učebnice kvantové teorie. Prostá symetrizace 
dává operátor

p
r

p
r rr r= → = +








r p r p p rÆ Æ
Æ

Æ Æ Æ
Æ

1
2 , (4.1.16)

jenž má ve sférických souřadnicích podobu

Æp i
r r

rr = −
∂
∂



1 . (4.1.17)
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Může překvapovat, že Æpr není prostě − ∂i r  tak jako v kartézských souřadnicích, ale právě podo-
ba (4.1.17) dává při explicitním výpočtu ve sférických souřadnicích hermitovskou symet rii 
operátoru Æpr. Výraz (4.1.17) se také shoduje s přímým výpočtem rozkladu hybnosti do sféric-
kých souřadnic. To zaručuje jeho užitečnost. Je však nutno upozornit, že takto sestro jený ope-
rátor Æpr není samosdružený, ani nemá samosdružené rozšíření dle dodatku D6, a proto nerepre-
zentuje žádnou pozorovatelnou ve smyslu Postulátu II. K tomu se ještě vrátíme na konci § 4.2.

Proces symetrizace a tím samotného kanonického kvantování vycházející z postulá-
tu III není jednoznačný; například x p2 2 můžeme symetrizovat jako 1

2
2 2 2 2( )x p p x+  nebo 

jako xp x2  nebo třeba tyto dvě symetrisace kombinovat. Výsledky se budou lišit o veličiny 
řádu 2, v obecném případě alespoň , a v klasické limitě → 0 splynou. Je ovšem možno 
pro vést nějaký systematický výběr.

1.4.2 OBECNĚJŠÍ POHLED NA KANONICKÉ KVANTOVÁNÍ 

Položme si nyní obecnější otázku. Proč jsme se v Postulátu III omezili na kartézské pro-
měnné a nepoužili obecnějších podmínek než (4.1.1), tj. proč jsme nepostulovali vztahy

Æ , Æ , Æ , Æ Æ , Æ ; , ,...,
? ? ?

q p i q q p p i j Ni j i j i j i j  =   =   = =δ 0 1  (4.2.1)

pro libovolný soubor klasických kanonicky sdružených proměnných q p i Ni i, , ,...,=1 ?
V literatuře se s kvantovacím postulátem (4.2.1) dosti často setkáme. Jaká je hlubší 

moti vace pro takto zobecněný postulát, anebo naopak pro jeho zúžení na (4.1.1)? Většinou 
se argumentuje korespondencí mezi klasickými a kvantovými Poissonovými závorkami1. 
Jsou-li u q p q p( , ) ( , ) a v  dvě funkce souboru kanonicky sdružených proměnných, pak kla-
sická Poisso nova závorka je definována jako

w q p u u
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u
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p q i i i i
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1
. (4.2.2)

Tato binární operace má řadu charakteristických vlastností, jako linearitu v obou 
argumen tech, antisymetrii u u, ,

l
v v{ } = −{ }kl k

, pravidlo pro součin

u u u u u u1 2 1 2 1 2, , ,
l l l

v v v{ } = { } +{ }k k k

až konečně Jacobiho identitu

u u u u u u1 2 1 2 2 1 0, ,, ,
kl kl kl

v v v{ }{ } + { }{ } + { }{ } = .

Tyto vlastnosti jsou stejné jako základní vlastnosti komutátoru dvou operátorů nebo jeho 
skalárního násobku, jak je diskutováno v dodatku D.

1 Ty bývá zvykem označit hranatými závorkami, což se kříží s naším označením komutátoru, použijeme proto 
závorek složených s indexy.
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